Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексон III применение для титрования

    Далее раствором оксалата аммония элюируют ионы меди, образующие несколько более устойчивый комплексный анион с оксалат-ионом, чем ионы цинка. Оксалатный комплекс ионов меди разрушают пероксидом водорода и определяют содержание меди титрованием раствором комплексона П1. Ионы цинка десорбируют соляной кислотой и определяют их содержание также комплексонометрически. Метод может быть применен для анализа сплавов, содержащих медь и цинк  [c.325]


    Из известных в настоящее время комплексонов наибольщее применение для комплексонометрического титрования получила динатриевая соль этилендиаминтетрауксусной кислоты, встречающаяся в литературе под названиями трилон Б, комплексон И1, хелатон И1 и др. Трилон Б образует с катионами различных металлов в стехиометрическом отнощении (1 1) устойчивые и хорошо растворимые в воде комплексонаты и используется для количественного определения кальция, магния, цинка, висмута, свинца и алюминия в лекарственных препаратах. [c.186]

    К основным способам изменения селективности комплексонометрического титрования можно отнести а) титрование со специфическим индикатором б) использование новых комплексонов в) титрование при различной величине pH г) выделение определяемого компонента или сопутствующих ионов д) применение маскирующих веществ. Известно, что гетероциклические азосоединения являются групповыми реагентами, поэтому вряд ли можно говорить о выборе специфического индикатора кроме того, в качестве титранта из большого числа аминополикарбоновых кислот наиболее часто применяют этилендиаминтетрауксусную кислоту. Поэтому ниже рассмотрены только способы в)—д). [c.160]

    Среди титриметрических методов, основанных на реакциях комплексообразования, наибольшее значение имеют реакции с применением комплексонов. Устойчивые координационные соединения с комплексонами образуют почти все катионы, поэтому методы комплексонометрии универсальны и применимы к анализу широкого круга разнообразных объектов. Рабочие растворы устойчивы. Для установления точки эквивалентности имеется набор цветных индикаторов и разработаны физико-химические методы индикации потенциометрические, амперометрические, фотометрические, термометрические и др. Точность титриметрических определений составляет 0,2...0,3%. Методы комплексонометрического титрования непрерывно совершенствуются. Синтезируются новые типы комплексонов, обладающих повышенной селективностью, и новые индикаторы. Расширяются области применения комплексонометрии. [c.245]

    Применение флуоресцеин-комплексона в качестве металл-флуоресцентного индикатора (при прямом и обратном комплексонометрическом титровании) и флуориметрического реагента дало возможность разработать методики определения щелочноземельных металлов, сульфатов меди, никеля, кобальта, марганца, хрома, железа, молибдена, галогенов, алюминия и титана 1, 54, 26]. [c.270]


    Промышленное применение комплексоны нашли при разделении редкоземельных элементов методом ионного обмена. В качестве комплексообразователей (элюантов, элюирующих агентов) применяются аминокислоты (этилендиаминтетрауксусная, нитрилтриуксусная, эти-лентриаминпентауксусная кислота и др.). В аналитической химии ком-плексонометрическое титрование трилоном Б (двунатриевая соль этилендиаминтетрауксусной кислоты) наиболее удобно для аналитического определения РЗЭ [113]. [c.78]

    Амперометрическое титрование применяют часто для определения анионов. Практическое значение имеет также определение катионов по методу осаждения с применением органических реактивов. Так, раствором купферона титруют титан, цирконий, раствором оксихинолина — кадмий, цинк, алюминий. Известны, кроме того, методы определения катионов посредством титрования раствором комплексона. [c.439]

    Методы анализа, основанные на использовании реакций комплексообразования, очень разнообразны. Развитию этих методов способствовало применение кондуктометрии для изучения комплексных соединений, а также в связи с использованием комплексонов. Также получила широкое распространение группа методов, основанная на реакциях осаждения. В отличие от гравиметрического химического анализа кондуктометрическое титрование не требует много времени и имеет более высокую чувствительность. [c.236]

    Магний в щелочной среде также реагирует с хромазуролом S с образованием лака фиолетового цвета, легко растворимого в комплексоне. Для определения магния Тейс рекомендует следующий метод к анализируемому раствору соли магния прибавляют 5 мл 25%-ного раствора аммиака и 5 лл буферного раствора (105 мл концентрированного раствора аммиака и 15 г нитрата аммония в 300 мл). Прибавляют 5 капель индикатора и титруют 0,05 М раствором комплексона до появления яркой зеленовато-желтой окраски. Переход окраски получается отчетливым при применении 0,1—0,05 М раствора комплексона. При титровании более разбавленным раствором комплексона переход окраски растянут. [c.369]

    В работе была сделана попытка применить прямое титрование Pu(lV) раствором комплексона III. Применение ализарина [c.207]

    Чжан Вень-цин [241] исследовал возможность применения в качестве индикатора крО(Ме арсеназо I и ряда других соединений при титровании Pu(IV) комплексоном III в кислой среде. Среди соединений подобных арсеназо I, т. е. имеющих в своем составе азогруппу, ло отношению к которой в орто-положении находятся [c.208]

    Несмотря на то, что за последние годы методы комплексометрического титрования приобрели первостепенное значение для титриметрического определения многих элементов, для определения урана они нашли только очень небольшое применение. Это связано с тем, что ион уранила образует недостаточно прочные комплексы с рядом комплексонов, вследствие чего мешаюш,ее влияние других элементов оказалось очень большим. С другой стороны, титрование урана (IV), образуюш.его прочные комплексы в достаточно кислых растворах, в которых мешаюш.ее влияние других элементов (за исключением Zr, Th, Pu, Fe и некоторых других) невелико, все же удобнее проводить оксидиметрическим методом, позволяюш.им с такой и даже большей точностью определять его содержание в присутствии значительно большего количества других элементов. [c.99]

    Из рассматриваемой группы методов титрование 8-оксихинолината уранила бромид-броматным раствором обладает наибольшей точностью. Достоинством такого метода является еш,е и то, что осаждение в виде 8-оксихинолината, особенно с применением комплексона III для удержания других элементов в растворе, позволяет избавиться от мешающего влияния большого числа других элементов. [c.103]

    Потенциометрическое титрование раствором комплексона Л1. Косвенный потенциометрический метод определения кобальта (и других металлов) основан [906] на обратном титровании избытка этилендиаминтетраацетата раствором Hg(N0a)2 индикаторный электрод—амальгамированная серебряная проволока. Оптимальное значение pH 9—11. Описано [1225] применение ртутного индикаторного электрода и амальгамированного золотого электрода при комплексонометрическом определении кобальта и 28 катионов других металлов. [c.125]

    Хан [1006], обсуждая преимущества обратного титрования, отмечает целесообразность его применения для устранения ошибок, имеющих место при прямом титровании кальция и магния раствором комплексона III по эриохром черному Т из-за недостаточно резкого перехода окраски и каталитического разложения индикатора в присутствии следов некоторых элементов, в частности Си и Мп. Обратное титрование рекомендуется при определении кальция и магния в присутствии фосфат-ионов 1046], в неводных средах [1014, 1192] и смазочных маслах [953]. [c.40]


    К повышению селективности определения кальция в присутствии магния приводит использование в качестве титранта эти-ленгликоль-бис-(аминоэтил)тетрауксусной кислоты [9221. Применение этого комплексона позволяет определять кальций в присутствии более чем 100-кратного избытка магния. К тому же при зтом становится возможным последовательное фотометрическое титрование кальция и магния в одной порции раствора. [c.48]

    Описано комплексонометрическое микро- [1360] и полумикро-онределение кальция с индикатором мурексидом методом капельного титрования [501]. По мнению авторов, метод дает удовлетворительные результаты при определении кальция в известняках и доломитах, и в тоже время является удобным, быстрым п простым, в связи с чем может быть применен в полевых условиях. Для определения кальция в воде в нолевых условиях применяют таблетки сухого реагента, заменяющего раствор комплексона HI [999]. [c.53]

    Кальцеиновый синий (2 3 46) является в ряде случаев более чувствительным металлиндикатором, чем флуоресцеин-комплексон, что обусловлено, вероятно, совпадением его максимума поглощения (360 им) с одним из максимумов радиации большей части источников ультрафиолетового излучения Комплексон применен прн титровании щелочноземельных металлов и при обратном титровании меди и ряда тяжелых металлов [527] [c.271]

    Титрование растворами триазолов и сульфатиазолов. Серебро титруют с серебряным электродом и насыщенным каломельным [699] или ртутно-сульфатным [221] электродом сравнения растворами бензтриазола или бромбензтриазола [221] в последнем случае наблюдается более отчетливый скачок потенциала. Величина скачка потенциала в кислой среде меньше, чем в нейтральной, однако достаточна для определения конца титрования (500— 700 мв). Наиболее благоприятной средой для титрования является 0,05—0,1 N НКОд. Определению серебра не мешают 100-кратные количества свинца, цинка, никеля и кобальта. При введении комплексона III титрование серебра раствором бромбензтриазола в нейтральной или слабоаммиачной среде возможно в присутствии Си, Со, N1, 2п, Т1 и РЬ при соотношении 1 200. СГ определению не мешают мешают 1", СК и З ОГ- Ошибка титрования колеблется в пределах 0,02—0,04 мг при содержании серебра 0,5—2,5 мг. Метод применен к анализу сплава серебра, содержащего медь и никель, а также для анализа свинцово-серебряной руды, содержащей Хп и Си [221]. Потенциометрическое титрование серебра в нейтральной или слабощелочной среде раствором 1,2,3-бензтриазола в присутствии комплексона III см. [965]. [c.95]

    Теоретические основы изложены в учебниках и монографиях [1-6, 14, ЪЪ-Ъ1, 39], а практическая сторона в [33-36, 54-61]. Особо следует отметить две работы монография Р. Пршибла [34] посвящена прикладной комплексонометрии, в монографии Юрист И.М. и Талмуд М.М. [36] систематизирован огромный материал по комплексонометрии, обсуждены методы селективного комплексоно-метрического титрования с применением металлохромных индикаторов, дано их теоретическое обоснование и приводятся практические примеры анализов. [c.626]

    Ход определения. К аликвотной части анализируемого раствора, например к 10 мл, прибавляют 10 мл 0,1 н. раствора комплексона (ЫазНУ), нейтрализуют примерно до pH 5 и избыток комплексона определяют титрованием 0,1 М раствором хлорного железа в присутствии сульфосалициловой кислоты в качестве индикатора. Таким образом приблизительно устанавливают необходимое количество комплексона. К другой части раствора прибавляют ранее установленное количество комплексона и сверх того около 3 мл избытка его и раствор нейтрализуют до pH 7 нормальным раствором едкого натра, освобожденного от карбоната, потенциометрически с применением индикаторного сурьмяного электрода. При малом содержании бора (ниже 10 мг) раствор нейтрализуют до [c.169]

    К основным способам изменения селективности комплексонометрического титрования можно отнести а) титрование со специфическим индикатором б) использование новых комплексонов в) титрование при различной величине pH г) выделение определяемого компонента или сопутствующих ионов д) применение маскирующих веществ. Известно, что гетероциклические азосоедннения являются групповыми реагентами, поэтому вряд ли можно говорить [c.160]

    Более подробные сведения о комплексонах и их применении см. П р ш и-бил Р., Комплексоны в химическом анализе, Издатинлит, 1960 Комплексомет-рия, сборник переводов, Госхимиздат, 1958 Лурье Ю. Ю., Справочник по аналитической химии, Химия , 1970 Шварцеибах Г., Флашка Г., Комплексонометрическое титрование, Химия , 1970. [c.337]

    Цирконий(IV) может быть определен методом спектрофотометрического титрования раствором комплексона III, если в качестве индикатора применен п-нитробензолазопирокатехин, так как комплексное соединение циркония(IV) с индикатором (Ямавс = 510 нм) менее устойчиво, чем комплекронат циркония ( ма с 375 нм).  [c.489]

    Титриметрический анализ. Комплексонометрия — один из широко распространенных методов анализа, основанный на применении комплексонов — органических соединений, содержащих азот и карбоксильные группы. Титрование комплексонами различного состава позволяет определять многие элементы цирконий, железо, висмут, кадмий, медь, цинк, магний, кальций и др. Известны и другие титриметрические методы, в которых используют комплексные соединения. Так, существует метод титрования фторидами— фторометрия, солями ртути (II) — меркуро-метрия и др. [c.24]

    Селективность комплексометрических методов обычно невелика и зависит от того, какие именно донорные атомы являются реакционными началами титранта. Так, при титровании иодидом калия селективность достаточно высокая, потому что иодид-ионы образуют комплексы или осадки только с ионами ртути, серебра, свинца, висмута. Аммиак и полиамины также более селективны по сравнению, например, с комплексонами, так как они реагируют только с ионами Со, N1, Си, 2п, Сс1, Нд и Ад. Аммиак в качестве титранта имеет некоторые недостатки, связанные прежде всего с малой прочностью аммиакатов металлов, Применение полиаминов, например тетраэтилен-пентамина имеет преимущество как по селективности взаимодействия, так и по образованию прочных комплексных соединений. [c.270]

    Влияние многих катионов можно устранить, если использовать прием, предложенный Шайо [ИЗО, 1131] избыток комплексона П1 оттитровывают раствором ацетата цинка, затем разрушают комплексонат алюминия нагреванием с фторидом и снова титруют раствором ацетата цинка. Расход титранта при втором титровании эквивалентен содержанию алюминия. Шайо в качестве индикатора применил бензидин и окислительно-восстановительную систему феррицианид — ферроцианид. Если этот индикатор заменить ксиленоловым оранжевым, то получается очень хороший, довольно специфичный метод, нашедший широкое применение в лабораториях. [c.67]

    Титрование раствором железа с применением салициловой или сульфосали-циловой кислоты. Метод предложен Милнером и Вудхе-дом [976]. Широкому внедрению этого метода способствовали работы Башкирцевой и Якимец [42—46, 351]. Титрование обычно выполняется при pH 6. После кипячения анализируемого раствора с комплексоном III растворы перед титрованием охлаждают. При титровании неохлажденных растворов (pH 5) наблюдается нечеткий переход окраски в эквивалентной точке вследствие вытеснения железом алюминия из его комплексоната [976]. Милнер и Вудхед [976] получили очень хорошие результаты при титровании 2,5—60л<г алюминия (с относительной ошибкой 0,2—0,8%) при pH 6,5. Однако, согласно исследованиям Башкирцевой и Якимец [45], в присутствии мешающих ионов лучше титровать при pH 4,8, так как влияние других ионов в этом случае значительно меньше, чем при pH 6. При pH 4,8 магний не мешает, а при pH 6 может присутствовать до 80 мг его. В 100 мл анализируемого раствора могут быть при pH [c.71]

    Широко применяется последовательное титрование при разных pH, особенно при анализе смеси алю.миния и железа. Сначала при pH 1—2 титруют железо с индикатором сульфосалициловой кислотой. Затем создают pH 5—6, и избыток комплексона П1 оттитровывают раствором соли железа с тем же индикаторо.м. Описано множество аналогичных методов с применением других индикаторов для железа или же титрованиел алюминия другими методами. Иногда определяют сумму алюминия и железа, затем в другой аликвотной части определяют железо, а содержание алюминия находят по разности. Однако при этом не следует применять те методы, в которых разница между величинами pH, рекомендуемыми для определения Ре и А1, незначительна. Например, в работе [509] железо титруют прн pH 2 салициловой кислотой, а затем титруют алюминий при pH 3 с индикатором медь + ПАН. При определении алюминия и хрома в одном растворе использовано различие в прочности их комплексонатов при различных pH и в зависимости от продолжительности нагревания, так как комплексонат хрома образуется только после довольно длительного кипячения.В табл. 10 приведены способы определения алюминия в присутствии других металлов. [c.77]

    Амперометрнческое титрование алюминия основано на исполь-зовании в качестве титранта веществ, осаждающих алюминий или образующих с ним устойчивые комплексы. Титрант должен восстанавливаться на электроде (ртутном или платиновом). Возможно применение и невосстанавливающихся титрантов (например, NaF), если вводить в качестве индикатора эквивалентной точки вещество, дающее диффузионный ток (в данном случае ионы Fe " ). При амперометрическом опредв/тенин алюминия в качестве титрантов используют фториды натрия или калия [52, П6, 439, 441—443, 493, 1239], оксихинолин [116, 286, 380], растворы солей железа, кальция и ванадила при обратном титровании избытка комплексона [c.89]

    Наибольший интерес в практическом плане представляет глицинтимоловый синий (2.3 39) [517—521]. Этот комплексон образует комплексы преимущественно с катионами переходных и двухвалентных элементов побочных групп Периодической системы элементов Д. И. Менделеева и практически не взаимодействует с катионами, имеющими электронную конфигурацию типа инертного газа. Наиболее прочные комплексы образуются с палладием и медью. Однако устойчивость комплекса с палладием превышает оптимальное значение для успешного применения реагента в качестве металлиндикатора, и титрование с применением ЭДТА в связи с этим затруднено. В случае меди подобного блокирования не наблюдается, и применение индикатора (2.3.39) дает возможность избирательно определять этот катион [522, 523]. С уранил-ионом образуются комплексы иОгНзЬг в области рН = 4—4,4 (/(=0,8-10 ), комплексы с соотношением [и02+] [НзЬ2 ]= 1 2 при рН = 4,5—5,0. Комплексон [c.267]

    Преимущества метилкальцеина по сравнению с кальцеином проявляются при использовании в качестве комплексонометрических титрантов комплексонов, обладающих определенной селективностью, но образующих менее устойчивые комплексы, чем ЭДТА Например, при титровании гидроксиэтилэтилендиамин-триуксусной кислотой применение в качестве индикатора кальцеина дает отрицательные результаты, так как этот индикатор и титрующий агент имеют почти одинаковую комплексообразующую способность метилкальцеин, образующий менее устойчивые комплексы, успешно применяется для определения А1 +, N1 +, Мп2+, ТИ+ [1, 76]. [c.270]

    Значительным дополнением к титриметрическим методам было развитие так называемого комплексонометрического титрования — метода, основанного на использовании (в качестве титранта) полиаминополикарбоновых кислот, названных комплексонами . Собственно говоря, почти все методы базировались на применении одной кислоты — этилендиаминтетрауксусной. Вклад в это нахфавление внесен щ)ежде всего швейцфским химиком Г. Швар-ценбахом, а также чехословацким ученым Р. Пршибилом и др. (30—50< годы). [c.19]

    Титрование этилендиаминтетрауксусной кислотой с применением специфических индикаторов. Точку эквивалентности при титровании устанавливают по появлению или исчезновению синей или голубой окраски роданидного комплекса кобальта [1300, 1301, 1394]. Для отделения кобальта от других элементов осаждают его в виде акридинроданидного тройного соединений [1460]. Осадок растворяют в ацетоне и титруют кобальт раствором комплексона III до исчезновения синего окрашивания. Предложено [1395] осаждать кобальт в виде гексанитрокобальтиата калия и натрия, растворять осадок в концентрированной соляной кислоте и титровать ионы кобальта в ацетатном растворе комплексона III в присутствии роданида и ацетона. Вместо ацетона можно пользоваться амиловым спиртом [1299], причем синий роданидный экстракт кобальта в амиловом спирте может служить индикатором при определении ряда других катионов, образующих с комплексоном III более прочные комплексы, чем кобальт (кальций, свинец, торий и др.). Индикатором может служить также хлороформный раствор синего соединения кобальта с роданидом и трифенилметиларсонием [536]. К анализируемому раствору, содержащему от 2 до 2 мг Со, прибавляют 25 мл 0,01 N раствора комплексона III, 1 М раствор гидроокиси аммония до щелочной реакции по лакмусу, вводят 10 мл хлороформа, 2 мл аммиачного буферного раствора с рн 9,3, 5 мл 50%-ного раствора роданида калия, 3 мл 1%-ного раствора хлористого трифенилметиларсония и оттитровывают избыток раствора комплексона III стандартным раствором сульфата кобальта до появления синего окрашивания хлороформного слоя. Метод рекомендуется применять для опре- [c.124]

    Авторы изучали также возможность применения других индикаторов. Роданид дает очень медленное изменение окраски при рн 1—2 от желтой через оранжевую к красной вследствие образования окрашенного комплекса с Pu(IV) в присутствии комплексона III. Сульфосалициловая кислота так><се является малоподходящим индикатором в области pH 1—5 вследствие медленного развития окраски в эквивалентной точке. Более быстрое изменение цвета раствора от оранжевого до малиноворозового происходит при нагревании пробы до 40—50° С и pH 1—2. Тем не менее средняя ошибка титрования составляет около 7% для 10 мг плутония. [c.207]

    Недавно П. Н. Палей и Сюй Ли-юань [187] разработали метод определения урана (IV) титрованием растворами комплексона III с применением торона [1- (2-арсонобензолазо)-2-оксинафталин- 3,6-Дисульфокислоты] в качестве индикатора [187]. [c.99]

    Комплексоны находят самое широкое применение в различных отраслях техники и технологии как реагенты, способные связывать двух- и трехзарядные катионы металлов в прочнейшие комплексы. Поэтому они используются как умягчители воды, маскирующие реагенты, растворители оксидов металлов и солей Ре" , аР Мп , Сг и т. д., накопители микроэлементов (2п, Си, V, Мо, Мп и др.), аналитические реагенты в объемных комплексонометриче-ских методах титрования металлов и т. д. [c.659]

    Комплексонометрический метод РТоны хрома (III) медленно взаимодействуют с комплексоном П1 прп кипячении в слабокислой среде (pH 5,3—6) с образованием интенсивно окрашенного фиолетового комплекса. Окраска комплекса мешает определению точки эквивалентности. Применение флуоресцирующих индикаторов позволяет устранить эти затруднения и определить комплексо-ноыетоически значительные количества хрома обратным титрованием (прямое его титрование невозможно). [c.62]

    Принцип метода. Определение основано на титровании цинка в ацетатной буферной среде pH 5,6—5,8 раствором комплексона П1 в присутствии в качестве индикатора ксиленолового оранжевого. Свпнец отделяют в виде сульфата, другие мешающие элементы маскируют комплексообразующими веществами. Метод применении при содержании цинка более 3%. Относительное стандартное отклонение результатов определений 0,01. [c.101]

    Эта группа методов основана па осаждении арсената ионами металлов, образующ,их с ним нерастворимые соединения, и титровании избытка осадителя раствором комплексона III или другого подходящего комплексообразующего реагента с применением для индикации конечной точки соответствующих металлоиндикаторов или же конечную точку устанавливают нотенциометрически. В некоторых случаях возможно титрование избытка иона-осадителя без отделения образовавшегося осадка арсената. [c.49]

    Описан [658] еще один косвенный комплексонометрический метод, заключающийся в осаждении арсената в виде восстановленного молибдоарсената с применением хинолина в качестве осадителя, отделении образовавшегося осадка, растворении его в NH4OH, восстановлении молибдена(УТ) до молибдена(У) с помощью гидразина, связывании молибдена(У) добавлением избытка раствора комплексона III и титровании избытка комплексона III прн pH 4,5—5,0 раствором USO4 в присутствии нириднлазонаф-тола в качестве индикатора. [c.50]

    Индикатор образует с катионами кобальта в кислом растворе соединение красного или красно-фиолетового цвета. При прямом титровании раствором комплексона 1П окраска в точке эквивалентности изменяется из красной в желтую (цвет свободного красителя). Можно также титровать избыток комплексона обратно растворами Ti la, ТЬ(ЫОз)4, В1(ЫОз)з, Zn( 2Ha02)2. Метод был применен [944] для определения кобальта в присутствии больших количеств меди, например при анализе латуней и бронз. Мешающее влияние меди рекомендуется устранять восстановлением ионов двухвалентной меди иодидом калия и аскорбиновой кислотой. [c.123]

    Отмечается возможность спектрофотометрического титрования следовых количеств кальция в присутствии ыурекспда [1078] и предлагается использовать этот метод для определения содержания кальция в конденсатпых водах. При содержании < 4 мкг Са применяют 0,001 или даже 0,0001 N растворы комплексона III. Целесообразность применения 0,0001 7V растворы титрапта вызывает сомнение, так как имеются данные, согласно которым ие следует использовать растворы комплексона III с концентрацией < 0,001 N [36]. [c.47]


Смотреть страницы где упоминается термин Комплексон III применение для титрования: [c.148]    [c.328]    [c.216]    [c.322]    [c.54]    [c.59]   
Справочник по аналитической химии (1962) -- [ c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексоны



© 2025 chem21.info Реклама на сайте