Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина рутением

    При сравнении таких катализаторов гидрокрекинга, как иридий, осмий, платина, рутений и родий на кислотных носителях было показано, что при содержании металлов в катализаторе в количестве 0,5% высшей активностью обладал родиевый катализатор, однако наибольший выход углеводородов С5 получен на платиновом катализаторе. [c.320]

    Как платиновые металлы — платина, рутений, родий, палладий, осмий и иридий — относятся к воде, кислороду, кислотам и щелочам Написать уравнения возможных реакций. [c.253]


    К восстановителям относятся элементы, атомы которых имеют в наружном электронном слое один, два или три электрона, т. е. металлы (в табл. 26 они расположены слева от пунктирной линии). Конечно, не все металлы обладают одинаково выраженными восстановительными свойствами. Наиболее слабыми восстановителями являются так называемые благородные металлы (золото, серебро, платина, рутений, иридий и др.). Благородные металлы свое название получили потому, что они трудно вступают в реакции окисления, не окисляются на воздухе и не подвергаются коррозии. [c.95]

    Такая проверка была проведена для многих систем на электродах из платины, палладия, родия, иридия, рутения и сплава платина—рутений (для обзора см. [54, 551). [c.226]

    При определении индия по линии 1п 3256, 1 А можно ожидать помех за счет висмута (особенно при возбуждении в искре), марганца, молибдена, платины, рутения, селена и вольфрама, а также за счет очень слабых линий железа и иридия. Следует обратить внимание также на возможность помех за счет интенсивной линии С(1 3261,1 А (наиболее интенсивная линия этого элемента) и Т1 3254, 3 А. При определении индия по линии 1п 3039, 4 А можно ожидать помех за счет линий кобальта, германия, иридия и мышьяка, а также за счет более слабых линий ртути, железа и вольфрама. Должны быть приняты во внимание, кроме того, линии Се 3039,1 А, Сг 3040, ЭА, Ге 3037, 4А, 1г 3039,3 А, №3037, 9 А, Оз 3040, 9 Аи Р1 3042, 6 А. [c.203]

    Платина, рутений, родий и иридий, отложенные на угле, а также никель, отложенный на окиси цинка, обладают очень слабо выраженной способностью гидрировать двойные связи фуранового кольца [477]. [c.193]

    Платина, рутений, родий, иридий и осмий при 250—300° С в паровой фазе производят гидрогенолиз С — 0-связи цикла в положении 1—5 [477]  [c.193]

    Пфейффер и Вернер обнаружили, что к вновь открытому классу соединений принадлежат не только гидроксосоединения хрома, но и гидроксокомплексы кобальта, платины, рутения и др., т, е. явление это более общее, чем могло казаться вначале. [c.68]

    Известно, что во многих случаях каталитическая активность э. с. о, значительно выше, чем каждого из металлов в отдельности (см. например, [2]). Наиболее интересные результаты были получены нами при исследовании платино-рутениевых катализаторов [47, 50[. Подробное изучение системы платина—рутений и палладий—рутений было предпринято в связи с тем, что в литературе имеются указания на высокую каталитическую активность сплавов платины и рутения с неболь- [c.208]

    Характерным свойством платиновых металлов является способность абсорбировать на поверхности некоторые газы, особенно водород. Склонность к абсорбции значительно возрастает у металлов, находящихся в мелкораздробленном и коллоидном состояниях. Наибольшая способность к абсорбции водорода присуща палладию I объем палладия при комнатной температуре может поглотить 350—850 объемов водорода. При поглощении определенного объема водорода кристаллическая решетка палладия расширяется, так как образуются твердые растворы водорода в металле. Абсорбционная способность по отношению к водороду убывает в ряду иридий, родий, платина, рутений, осмий. Абсорбированный водород легче всего удаляется из палладия, труднее — из платины и иридия. Платина (особенно платиновая чернь) довольно сильно поглощает кислород 100 объемов кислорода на 1 объем платиновой черни . Палладий и другие платиновые металлы поглощают кислород значительно меньше. [c.9]


    Легирование титана и его сплавов палладием, платиной, рутением Легирование ЫЬ или сплавов ЫЬ-Та платиной [c.123]

    В качестве катодных присадок для повышения пассивируемости титана и его сплавов могут быть использованы различные электроположительные металлы (палладий, платина, рутений и ряд других металлов платиновой группы), а в некоторых условиях даже и менее благородные металлы — Ке, Си, N1, Мо, и др.) Дальнейшее исследование возможности увеличения пассивируемости сплавов применением в качестве активных катодных центров некоторых интерметаллидов и таких соединений как карбиды, нитриды, силициды [2, 97] для повышения пассивации титана может привести также к интересным и важным результатам. [c.126]

    Такая проверка была проведена для многих систем на электродах из платины [28, 30, 142, 145, 149, 153, 154], палладия [177], родия [144, 145, 148], иридия [152, 155], рутения и сплава платина—рутений (10 вес. % рутения) [145, 147]. [c.70]

    Металлы семейства платины рутений Ви (5 10 %), родий ВЬ (1-10" %), палладий Р(1 (1 -10" %), осмий Оз (5-10" %), иридий 1г (1-10 %) и платина Р1 (5-10 %) — очень сходны между собой. В природе встречаются в самородном состоянии, всегда совместно. [c.404]

    При экстракции комплексов металлов с тиооксином можно применять следующие маскирующие вещества концентрированную соляную кислоту (для маскирования железа, молибдена, ртути, серебра, висмута, олова и кобальта), тиомочевину (для маскирования меди, серебра, золота, платины, ртути, рутения и осмия), фтористый натрий (для маскирования железа и олова) и цианистый калий (для маскирования железа, серебра, золота, платины, рутения, осмия, иридия, палладия, никеля и кобальта). [c.196]

    Катализаторами электрохимических реакций служат металлы и полупроводники. Наиболее широкое примене -ние нашли -элементы и особенно металлы платиновой группы, никель и серебро. Установлено, что сплавы некоторых металлов обладают более высокой каталитической активностью, чем чистые металлы. Например, сплав платина-рутений имеет более высокую каталитическую активность в реакциях электроокисления водорода и метанола, чем платина и рутений. Вместе с тем в последние годы обнаружены катализаторы из числа боридов, карбидов, сульфидов и окислов металлов. Так, борид никеля и карбид вольфрама оказались хорошими катализаторами электроокисления водорода и гидразина, а окись вольфрама и бронза (Ыаж Оз, где х—переменное число) — катализаторами восстановления кислорода. Поскольку число сплавов и полупроводниковых соединений очень велико, то весьма широк и круг перспективных катализаторов. Круг возможных катализаторов сужается при учете их стойкости в условиях работы электрода, электропроводности и стоимости. [c.25]

    Такие каталитические волны бывают значите.тыю больше вызванных простым восстановлением катализатора при той же концентрации. Примерами веществ, дающих каталитические волны, являются платиновые металлы, именно, платина, рутений и палладий, перренат-ионы п различные производные хинолина.  [c.203]

    Для разрывных контактов применяются следующие материалы платина, палладий, радий, золото, серебро, воль фрам, молибден, никель, медь, медь-кадмий, платина-ро дий, платина-иридий, платина-рутений, платина-никель платина-вольфрам, палладий-иридий, палладий-серебро палладий-серебро-кобальт, палладий-медь, золото-серебро золото-никель, золото-цирконий, серебро-медь, серебро кадмий. Особую ценность представляют сплавы палладия с серебром и медные. Применение контактных материалов см. в табл. 6.9. [c.278]

    Как установил Н. Д. Томашов, введение в титан катодных добавок, таких как палладий, платина, рутений, рений и др., приводит к резкому уменьшению скорости коррозии в растворах серной, соляной и фосфорной кислот. Так, например, при содержании 0,2% Р(1 скорость коррозии титана в 5%-ном растворе НгЗО при температуре кипения уменьшается в 50 раз. [c.142]

    Определению платины сильно мешает палладий, дающий почти столь же интенсивную окраску, как и платина Рутений дает слабую окраску при условиях определения платины и повышает результаты приблизительно на 10%, если присутствует в количестве, равном количеству платины. [c.385]

    В растворе пропионовой кислоты максимальное светопоглощение достигается при комнатной температуре за 10—15 мин и сохраняется более 2 час. Мешают платина, рутений, иридий, железо, хром, медь и золото. [c.236]

    Минералы подразделяют на три группы свободные элементы, силикаты и несиликатные минералы. Примеры минералов каждой группы приведены в табл. 22.4. К числу металлов, встречающихся в виде свободных элементов, относятся серебро, золото, палладий, платина, рутений, родий, осмий и иридий. Металлы, расположенные в периодической таблице в группах 8В и 1В, называют благородными из-за их низкой реакционной способности. Все они характеризуются очень высокими стандартными восстановительными потенциалами и, следовательно, с большим трудом поддаются окислению. [c.341]


    Требованию высокой активности для многих электрокаталитических процессов и одновременно коррозионной устойчивости отвечают металлы платиновой группы и сплавы на их основе. Эти катализаторы являются весьма эффективными для водородного и кислородного электродов электроокисление углеводородов с достаточно высокими скоростями при низких температурах удалось пока осуществить лишь на платиновых металлах. Широкому практическому использованию платиновых катализаторов мешают их дороговизна и дефицитность. Поэтому перед электрокатализом стоят задачи разработки путей наиболее эффективного использования платиновых катализаторов и поиска менее дорогих и дефицитных электродных материалов. Более эффективное использование платиновых металлов достигается увеличением их дисперсности, нанесением платиновых осадков на различные носители с электронной проводимостью и развитой поверхностью (например, на углеродистые материалы). Резкое увеличение каталитической активности иногда достигается при использовании комбинированных катализаторов. Так, на дисперсных платино-рутение-вых катализаторах скорость электроокисления метанола оказывается выше на три порядка по сравнению со скоростью процесса на платине или рутении, взятых в отдельности. [c.264]

    Особый интерес представляет применение благородных металлов платиновой группы при так называемом катодном легировании сталей, разработанном группой ученых АН СССР. Сущность катодного легирования заключается в повышении эффективности катодных процессов в пассивирующихся системах, в результате чего потенциал системы смещается в сторону положительных значений и она переходит в пассивное состояние. В качестве катодных легирующих добавок применяют небольшие количества (0,1—0,5%) палладия, платины, рутения и др. [c.149]

    В — при 410—450°С. И — конверторы из аустенитной нержавеющей стали для получения цианистого водорода из аммиака и воздуха с йатализатором типа платина — рутений при температуре красного каления. [c.500]

    Перекись натрия весьма активное вещество. Реагируя с металлическим натрием, она превращается в ЫагО. Смесь эквимолекулярных количеств перекисей магния и натрия при увлажнении водой взрывает. Так жс сильно реаги )уют при соприкосновении с перекисыо натрия и водой порошок алюминия, роданид аммония, мышьяковистый ангидрид, треххлористая сурьма. Медь, железо, никель, олово золото, серебро, платина, рутений, палладий и т. л. сильно окисляются перекисью натрия при повышенной температуре. Наряду с влагой ускоряюи е действует во многих случаях и углекислота. [c.285]

    Окислительная способность гексафторидов платиновых металлов, как было отмечено выше, заметно возрастает с увеличением атомного номера в каждом ряду переходных элементов. Таким образом, гексафториды платины, рутения и родия являются наиболее сильными окислителями. Все эти гексафториды окисляют окись азота с образованием солей нитрозония [9, И]. Так, соединение NO OsFe можно получить в результате гомогенной реакции в газовой фазе. Гексафториды платины и иридия в гомогенной газовой среде образуют соли (N0 )2MFe [10, И]. Гексафторид платины является единственным гексафторидом платиновых металлов (относящихся к третьему ряду переходных элементов), который способен окислять кислород и ксенон с образованием соответственно 0+ PtF и Xe (PtFe) [9, 67], хотя гексафториды рутения и родия также окисляют ксенон [66, 67]. Первые потенциалы ионизации для молекулярного кислорода и атомарного [c.412]

    Кроме карбанионов к карбонилам металлов могут присоединяться и другие нуклеофилы. В частности, реакция вторичных аминов с катионом карбонила вольфрама приводит к карбамоильному комплексу (схема 97) [124]. Аналогичные карбамоильные комплексы получены из карбонилов платины, рутения, железа, марганца, молибдена и рения. Диметиламид лития переводит тетракар-бонилникель в карбамоильное производное (23) (схема 98). [c.266]

    Простые роданиды известны лишь для палладия (П) и платины (И). Комплексные роданиды получены для всех платиновых металлов и золота (кроме оомия) при взаимодействии комплексных хлоридов этих металлов с избытком роданидов целочных металлов. Поскольку СЫ5-"-ион — восстановитель, комплексные роданиды образуются преимущественно у низших степеней окисления платины, рутения и иридия. Соли щелочных металлов комплексных роданидов, за исключением роданидов золота, хорошо растворимы в воде и в спирте. [c.54]

    Легирование коррозионностойкнх сталей палладием, платиной, рутением, рением. [c.123]

    В качестве катодных легирующих присадок могут быть использованы различные эле-ктропо-ложительные металлы, как палладий, платина, рутений и ряд других металлов платиновой группы, а в некоторых условиях даже и менее благородные металлы, как рений, медь, никель, молибден, вольфрам и др. [c.19]

    В работе [70] было проведено сравнительное изучение активности палладиево-рутениевого, платино-рутение- [c.189]

    Поляризация водородного электрода может быть снижена применением катализаторов. Наиболее высокой активностью (высокий ток обмена) обладают металлы платиновой группы. Электрокаталитическая активность шлавов к реакции ионизации водорода может быть выше каталитической активности отдельных компонентов. Так, скорость окисления водорода на сплавах платина-палладий и платина-рутений выше скорости соответственно на ллатине, палладии, рутении. [c.78]

    Надо учитывать и то обстоятельство, что поверхность посуды, например стекла и кварца, обладает сорбционными свойствами (скорее всего, ионообменными). Это может приводить к уменьшению концентрации микроэлементов в растворе, т. е. к потерям. Многочисленные примеры приведены в литературе Рассмотрим некоторые из них. Летвейн показал, что концентрация Ы0" %-ных растворов никеля, марганца, молибдена, ванадия, золота, платины, рутения и титана в 6%-ной [c.154]

    Танкратова [839] готовила стандарты для анализа аффинированных иридия и рутения путем смешения растворов иридия, платины, рутения, родия, палладия, золота и железа, выпаривания до солей и прокаливания в водороде. Полученный порошок смешивали с измельченным графитом и полностью испаряли из отверстия электрода. Куранов [840] описал подобную же методику определения примесей в иридии и родии. В 1962 г. Линкольн и Колер [841] опубликовали универсальную методику спектрального анализа платины высокой чистоты. [c.298]


Библиография для Платина рутением: [c.544]    [c.124]   
Смотреть страницы где упоминается термин Платина рутением: [c.700]    [c.451]    [c.411]    [c.669]    [c.372]    [c.5]    [c.270]    [c.102]    [c.279]   
Коррозия (1981) -- [ c.217 ]




ПОИСК





Смотрите так же термины и статьи:

Рутений

Рутений рутений



© 2025 chem21.info Реклама на сайте