Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золото роданид

    Роданид золота(П1) в присутствии ацетата цинка образует кристаллический осадок красного цвета 2п[Аи(8СМ)д] [230]. Реакция используется для обнаружения золота. Роданид применяют для фотометрического определения золота [351, 905]. [c.34]

    Позднее было найдено, что родан образуется также при электролизе роданидов щелочных металлов. Технически это проводится путем воздействия галоидами на роданиды щелочных металлов. Родан представляет собой очень неустойчивое соединение, но может быть получен из сероуглеродного раствора в кристаллическом виде он плавится прн —3°. В нем еще больше, чем в циане, выражена аналогия с галоидами. Металлы, даже золото, при действии растворов свободного родана превращаются в роданиды. Родан может вступать в качестве заместителя во многие органические вещества при этом группа ЗСМ замещает атом водорода. Он легко присоединяется к углероду ио месту двойной [c.335]


    Комплексная соль золота (в пересчете на металл) Желтая кровяная соль Карбонат натрия Роданид калия Сегнетова соль [c.194]

    Описано [242] выделение серебра на стекло-графитовом катоде из азотнокислых растворов. Следовые количества серебра осаждаются на ртутном катоде из раствора, содержащего комплексон III, роданид или цианид [946] зтот метод был использован для определения серебра в металлическом золоте или свинце. [c.149]

    Мешающие влияния. В слабокислой среде в присутствии комплексона III, роданида и дитизона, помимо ртути, вступают в реакцию золото (III) и, вероятно, платина (II). Однако эти элементы на практике в водах не встречаются. [Мешающее влияние платины (II) можно устранить окислением. ] [c.295]

    В слабокислой среде в присутствии комплексона III и роданида с дитизоном, помимо ртути, вступают в реакцию также трехвалентное золото и, -вероятно, двухвалентная платина. Однако эти элементы на практике в водах не встречаются. [c.137]

    Например, можно определить природу металлического защитного покрытия, растворив его в ничтожном количестве растворителя и затем использовав реагент, пригодный для регистрации нескольких компонентов. Например, роданид калий-ртуть образует характеристические кристаллы с катионами кадмия, меди, золота, свинца и цинка. Для [c.243]

    В первой половине шестого периода способность к комплексообразованию с роданид-ионами выражена слабо. Редкоземельные элементы, тантал и вольфрам дают лишь малопрочные комплексы.. Прочность комплексов сильно возрастает для элементов восьмой группы и далее при достройке 18-электронной оболочки, т. е. для золота. По-видимому, для золота и платины характерна наибольшая прочность координационной сферы роданидных комплексов. [c.245]

    Мешающие вещества. Определению мешают золото, платина, палладий и ртуть, реагирующие в кислой среде так же, как серебро. Медь(II) не мешает определению. Мешают все анионы, образующие с серебром комплексные или малорастворимые соединения цианид-, роданид-, тиосульфат-, хлорид-ионы. Поэтому перед определением серебра необходимо проведение предварительного выпаривания с азотной и серной кислотами (см. разд. 6.1.2). [c.149]

    Кроме этих ионов мешают мышьяк (III), сурьма (III), олово (IV), молибден, золото (III), платина (IV), серебро, ртуть (II), висмут, селен (IV), теллур (IV), роданид- и хлорид-ионы. [c.882]


    В условиях определения ртути с родамином С способны реагировать железо, золото, индий, олово, платина, рений, серебро и таллий, в меньшей степени — сурьма и некоторые другие элементы. Это приводит к необходимости предварительного отделения ртути от мешающих веществ. Для этого ее экстрагируют бензольным раствором дитизона из 0,5 н. серной или азотной кислоты азотную кислоту применяют в тех случаях, когда пробы содержат большое количество свинца и других элементов, образующих малорастворимые сульфаты, выпадение которых в осадок может вызвать потери ртути. Мешающие элементы (кроме золота, серебра и меди, если она присутствует в больших количествах) остаются в исходном растворе [24, 38]. Для удаления серебра экстракт промывают раствором роданида. Применение бензола в качестве растворителя дитизона вместо хлороформа позволяет проводить экстракцию, промывку неводной фазы и реэкстракцию — в одной и той же делительной воронке, потому что водный раствор во всех стадиях разделения находится в нижнем слое и может быть удален без выливания бензольного экстракта [57, 58]. [c.230]

    Не способны образовывать полимерные соединения благородные газы нулевой группы периодической системы и одновалентные элементы первой группы, хотя есть указания о том, что некоторые элементы этой группы в соединениях типа цианида серебра и золота и роданида серебра образуют цепные молекулы. [c.88]

    Среди большого числа гетерометрических методов, предложенных Бобтельским с сотр. [577], есть и методы определения золота. Для определения одного золота рекомендуется титрование нитроном растворов, содержащих около 1 мг золота, роданид калия и разбавленный или концентрированный аммиак. При использовании разбавленного аммиака образуется белый Аи (нитрон), а в случае концентрированного аммиака — желтый Аи (нитрон) з. Предложена методика определения золота в смеси с палладием и платиной. Титрование выполняют за 5—IQ мин. Ошибка лежит в пределах 0—1%. [c.133]

    Перекись натрия весьма активное вещество. Реагируя с металлическим натрием, она превращается в ЫагО. Смесь эквимолекулярных количеств перекисей магния и натрия при увлажнении водой взрывает. Так жс сильно реаги )уют при соприкосновении с перекисыо натрия и водой порошок алюминия, роданид аммония, мышьяковистый ангидрид, треххлористая сурьма. Медь, железо, никель, олово золото, серебро, платина, рутений, палладий и т. л. сильно окисляются перекисью натрия при повышенной температуре. Наряду с влагой ускоряюи е действует во многих случаях и углекислота. [c.285]

    Определение. Качественно Р. обнаруживают в виде HgjNH2 l, HgS, а также атомно-абсорбционным, эмиссионным спектральным, фотометрич. и др. методами. Гравиметрически Р. определяют в виде металла, HgS, Hg2 l2, перйодата Hg5(IOg)2. Пробу руды разлагают при нагр., Р. отгоняется в присут. восстановителя (порошок Fe илн Си) под шубой из ZnO. Образующуюся Р. собирают на холодной золотой пластинке, к-рую по окончании анализа промывают и взвешивают. При низком содержании Р. в рудах используют кислотное разложение руд с добавлением фторида для растворения кварца и силикатов, содержащих Р. в высокодисперсном состоянии затем проводят концентрирование путем отделения примесей др. элементов экстракцией разл. комплексных соединений Р. (галогенидов, роданидов, дитиокарбаматов и др.). При прокаливании и сплав-ле.нии рудных концентратов и соединений Р. с содой Р. полностью удаляется в виде металла. Для подготовки аналит. пробы используют сочетание экстракции с термич. восстановлением и отгонкой Р. подготовленную пробу можно анализировать любым из перечисленных выше методов. Термич. восстановление используют также для качеств, обнаружения Р. даже при низких ее концентрациях. При фотометрич. определении Р. в качестве реактива используют 1-(2-пиридилазо)-2-нафтол, позволяющий определять микрограммовые кол-ва. Следы Р. также м. б. определены при помощи дитизона, используемого как гри фотометрич., так и при титриметрич. определении. [c.279]

    Отмечается, что в случае введения в систему больщих избытков иодид- и роданид-ионов наблюдался медленный процесс восстановления АиЗ+, При взаимодействии [Auedta l] - с тио-мочевиной, тиосульфатом или сульфит-ионами при pH = 6—7 наблюдается количественное восстановление Аи + до Аи+, а при рН<5 — частично до металлического золота [296]. Нормальный комплексонат золота(I) является самым устойчивым из всех известных комплексов ЭДТА с одновалентными катионами, по оценке [295], lg/ ML=14,6 (при 25°С и л,= 1,0) [c.158]

    Коэффициент распределения золота в системе Аи(1И)—триэтил-бензиламмоний—роданид аммония—хлороформ больше единицы при концентрации NH4S N 1 М [2311. Трибензиламин в хлороформе количественно экстрагирует Аи(1П) из растворов в 1 М НС1. Вместе с Аи экстрагируются Сг(У1) (100%), ЗЬ > 90% ), Яg (>95%), Со, №, Оа, Сс1, 2п, Мо(У1) (1-0,5%), Сг(П1), Ге(1И), Си, Мп, Аз(У), У(У), ЩУ ), Се(1У), Зс, РЗЭ, Са, Зг, Ва(< 0,5%) [9481. [c.90]


    Фенантролиновый комплекс серебра с бромпирогаллоловым красным экстрагируется нитробензолом из нейтральной среды. Максимум светопоглощения тройного комплекса находится при 590 нм, молярный коэффициент погашения равен 3,2-Ю [767]. Для связывания цианид-, роданид- и иодид-ионов в раствор вводят ионы ртути(П), избыток которых маскируют комплексоном III. Определению мешают только тиосульфат-ионы и золото (III). [c.112]

    Растворимость роданидов. Большинство роданидов растворимо в воде не растворимы роданистые серебро, ртуть, медь и золото. Роданистый свинец трудно раствор. ш в воде и разлагается при кипячении с послед-Heii. [c.375]

    В литературе нам не удалось найти данных по изучению тройных комплексов нитрона с роданидами металлов. В работах Бобтельского по гетерометрическому титрованию нитроном палладия, золота и платины в присутствии избытка роданида указывается на образование двойных комплексов нитрона с соответствующими металлами. Высказывается также предположение о возможности образования тройного комплекса палладия состава [Pd(Nyt)з] +[Pd(SGN)4] -. [c.161]

    Доказано, что в присутствии аммиака и этилендиамина двухзарядные ионы металлов группы железа имеют обычную кривую образования в соответствии с характеристическим координационным числом 6. Поэтому можно было бы ожидать, что они будут вести себя аналогичным образом в присутствии анионов, но этого не происходит или по крайней мере происходит редко. Так, многочисленные исследования показали, что синие растворы хлорида кобальта (II), вероятно, содержат те-трахлоро-комплекс при очень высоких концентрациях ионов хлора и что аналогичные комплексы присутствуют в соответствующих растворах бромида, йодида и роданида кобальта (II). Только в желто-красных растворах цианида кобальта (II) обнаружен гексациано-комплекс в соответствии с координационным числом 6. В желтых растворах цианида никеля имеется довольно устойчивый тетрациано-комплекс, но с увеличением избытка ионов цианида желтая окраска становится более интенсивной и принимает красноватый оттенок. Весьма возможно, что изменение цвета вызвано превращением тетрациано-иона в гексациано-ион . Если это справедливо, то можно сравнить систему цианидных комплексов никеля с изученной Н. Бьеррумом и Кнршнером системой роданидных комплексов золота (III). В этой системе тетрароданидо-ион сначала устойчив в довольно широком интервале концентраций, а затем присоединяет два дополнительных иона роданида при достаточно высоких концентрациях роданида. [c.66]

    Электрохимический метод очистки заключается в разрушении органических веществ сточных вод путем электрохимического окисления их на аноде и в извлечении из сточных вод металлов, кислот и других веществ. Электрохимический метод применим, например, при очистке сточных вод от медно-свинцово-цинковых рудообогатительных и золото-извлекательных фабрик, производства некоторых видов пластических масс, цехов гальванических покрытий и т. п. Содержащиеся в некоторых стоках цианиды окисляются при этом до углекислоты и азота. Наряду с анодным окислением цианидов и роданидов при электролизе сточных вод медно-свинцово-цинковых рудообогатительных фабрик и цехов гальванических покрытий на катоде регенерируются медь и некоторые другие металлы. [c.52]

    Фторид-ион, обладая достроенной электронной оболочкой (тип неона) и малым радиусом, обычно образует комплексы только с электростатическим характером химической связи. Поэтому комплексообразующие свойства иона фтора часто существенно отличаются от свойств ионов С1 , Вг и I". Последние также имеют электронную оболочку типа инертных газов, однако значительный радиус этих ионов облегчает их поляризуемость, поэтому они значительно чаще образуют с катионами комплексы за счет обобщения электронов. В результате ионы С1 , Вг и 1 (а также их аналог— роданид-ион) образуют комплексы преимущественно с ионами переходных элементов с недостроенным -подуровнем. Наиболее прочные хлоридные и роданидные комплексы образуют золото и ртуть, наименее прочные — цирконий, торий, алюминий, редкоземельные металлы и аналогичные элементы. Наоборот, для фтора характерно прежде всего комплексообразование именно с последними элементам1и наиболее прочный фторидный комплекс — это соединение с цирконием. Другие элементы IV и V групп периодической системы дают несколько менее прочные фториды. Однако это обусловлено конкуренцией между фторид- и гидр- [c.246]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Выделить ртуть можно также, медленно пропуская анализируемый раствор (pH которого предварительно доводится до 5—7) через асбест, импрегнированный сульфидом кадмия. Таким способом можно извлечь даже 0,5 мкг ртути из 200 мл раствора. Определению ртути дитизоновым методом мешают медь, золото, палладий, платина (II) и большое количество серебра. Следует отметить, что при введении в анализируемый раствор комплексона III (эТилендиаминтетраацетата натрия) реакция на ртуть с дитизоном становится специфичной — мешает только серебро, которое можно также маскировать добГавлением роданида [c.255]

    На возможность колориметрического определения ниобия по его реакции с роданидом в солянокислых растворах, содержащих хлорид олова (II) и винную кислоту, впервые указали Л. Н. Моньякова и П. Ф. Федоров По их наблюдениям образующееся в этих условиях соединение экстрагируется эфиром, и содержание ниобия можно определить по интенсивности желтой окраски эфирного слоя. Механизм этой реакции и влияние на нее различных факторов, подробно изученные И. П. Алимариным и Р. Л. Подвальной , рассмотрены ниже. Титан также дает окрашенный в желтый цвет роданидный комплекс, но чувствительность реакции на титан во много раз меньше, чем на ниобий, и при соотношении ] Ь Т1 = 1 30 еще возможно достаточно точное определение ниобия при условии, если концентрация Т10г в анализируемом растворе не превышает 0,3 мг в 10 мл. Тантал в условиях определения ниобия дает с роданид-ионами бесцветный комплекс. Определению ниобия мешают молибден, фольфрам, уран, ванадий, железо, хром, кобальт, медь, золото и платина, образующие в этих условиях окрашенные соединения с роданидом. При экстрагировании эфиром устраняется влияние хрома, урана, железа и меди, которые остаются в водном слое. Совместно с ниобием эфиром извлекаются окрашенные роданиды молибдена, вольфрама, титана, кобальта и йлатины. Соединения золота, селена и теллура восстанавли-. ваются до элементарного состояния и покрывают стенки сосуда, что мешает наблюдению окраски ниобиевого комплекса. [c.689]

    Простые роданиды известны лишь для палладия (П) и платины (И). Комплексные роданиды получены для всех платиновых металлов и золота (кроме оомия) при взаимодействии комплексных хлоридов этих металлов с избытком роданидов целочных металлов. Поскольку СЫ5-"-ион — восстановитель, комплексные роданиды образуются преимущественно у низших степеней окисления платины, рутения и иридия. Соли щелочных металлов комплексных роданидов, за исключением роданидов золота, хорошо растворимы в воде и в спирте. [c.54]

    К[Аи(СЫ5)2] не очень устойчив на воздухе он частично превращается в комплексный роданид золота (П1) и металлическое золото. Н[Аи(СН5)4] растворяется в воде и в эфире. Калиевые, натриевые, аммониевые и ртутные соли роданидов золота (П1) плохо растворимы в воде. Водные растворы красно-коричневого цвета. При разбавлении растворов комплексные роданиды золота (П1) гидролизуются, образуя гексароданиды. В растворах также происходит частичное разложение соединений с выделением комплексного роданида золота (I) и роданида щелочного металла. [c.56]

    По данным Горюшиной В. 1 и Гайлнс Е. Я. [53 8], наличие в растворе йодидов, бромидов и роданидов в некоторой мере препятствует извлечению золота дитизоном п при больпюй кои [c.190]

    Соли родапистоводородной кислоты — роданиды (тиоцианаты) легко получаются из цианидов путем присоединения серы. По химическим свойствам они сильно напоминают хлориды. Как и последние, роданиды образуют с нитратом серебра нерастворимый в воде и разбавленных кислотах осадок — роданид серебра AgS N. Типичной и очень чувствительной реакцией па роданиды является уже упомянутое выше красное окрашивание, появляющееся вследствие образования роданида железа(1П) при взаимодействии ионов F и S N. Родан-ионы сами по себе бесцветны, так же как и их соли с бесцветными катионами. Большая часть роданидов хорошо растворима в воде. Нерастворимы роданиды серебра, ртути, меди и золота. Трудно растворим роданид свинца, который разлагается кипящей водой. [c.506]

    Из соединений олова находят применение прежде всего двуокись олова, тетрахлорид олова, розовая соль (хлоростаннат аммония), оловянная соль (дихлорид олова), а также сусальное золото (дисульфид олова). Некоторые соли олова и органических кислот применяют при окраске тканей, например ацетат олова 8н(С2Нз02)2, и роданид олова Зп(ЗСМ)2, в качестве восстановителя при протравном печатании оксалат олова ЗПС2О4 применяют как протраву. [c.573]

    Изучено отделение трехвалентного железа от малых количеств Те (IV) и Ли (III) экстракцией смесью три-н-бутилфосфа-та с диэтиловым эфиром (3 7) в присутствии роданистого аммония. Золото экстрагируется из разбавленного солянокислого раствора при относительно низкой концентрации роданида, что используется для отделения его от теллура [206]. [c.48]

    В 1863 г. Браун [1] показал, что окрашенный роданидный комплекс молибдена, образующийся при восстановлении молибденовой кислоты цинком в присутствии роданид-ионов, экстрагируется диэтиловым эфиром. Этот прием, с использованием Sn la в качестве восстановителя, позднее [2] был использован для обнаружения молибдена в минералах. Интересно, что роданидный метод определения молибдена, включающий операцию экстракции, и до сих пор является едва ли не самым распространенным и надежным методом определения этого элемента. В 1867 г. Скей [3] экстрагировал диэтиловым эфиром роданиды железа (III), кобальта, меди и других элементов. Он указал на возможность осуществления ряда полезных разделений, например разделения кобальта и никеля, золота и платины, железа и щелочноземельных элементов. [c.7]

    Целесообразно оценить экстракцию галогенидов и нсевдога-логенидов с точки зрения относительной распространенности и важности отдельных экстракционных систем. Наибольшее значение в настоящее время имеет экстракция хлоридов и роданидов. Фторидные растворы агрессивны кроме того, из них экстрагируется мало элементов (правда, для тантала и ниобия это главная экстракционная система). Экстракция бромидных и иодидных комплексов применяется почти исключительно в лабораторных условиях, но для аналитической химии служит весьма полезную службу. Так, индий и золото часто извлекают в виде бромидов, мышьяк, сурьму, таллий, индий, олово — в виде иодидов. Цианиды слишком ядовиты, чтобы привлекать внимание химика-практика, к тому же некоторые цианидные комплексы, которые очень прочны и имеют другие достоинства, являются, к сожалению, многозарядными, а поэтому плохо экстрагируются. Широкое использование хлоридных комплексов связано прежде всего с доступностью соляной кислоты, ибо по чисто экстракционным характеристикам хлориды отнюдь не выделяются среди других галогенидов. Роданидные комплексы весьма интересны и использование их должно расширяться нужно только глубже исследовать механизм экстракции этих соединений. [c.12]

    В роданидных растворах могут существовать и золото(1) и золото(И1). Соединения золота(П1) способны к саморазложению, которое замедляется в присутствии НС1 высокой концентрации. В разбавленных растворах НС1 доминирует золото(1) [869]. Данные об экстракции золота из роданидных растворов отрывочны. Известно лишь, что золото способно хорошо экстрагироваться из разбавленных растворов НС1 в присутствии небольших количеств роданид-ионов такими растворителями, как МИБК [816] и смесь ТБФ с ДЭЭ [806]. [c.151]

    Некоторые металлгалогенидные комплексы интенсивно окрашены, что позволяет использовать их для экстракционно-фотометрического определения элементов. Наибольшее значение имеют методы определения ниобия, молибдена, рения и железа в виде роданидов, золота в виде бромидного комплекса. Известно также несколько способов, основанных на измерении светопоглощения в ультрафиолетовой области спектра. В этом случае можно фотометрировать и слабоокрашенные, и бесцветные комплексы, например AU I4. Однако эти методы обычно менее избирательны и надежны, поэтому применяются значительно реже. Наконец, в последнее время развиваются приемы, основанные на введении в экстракт, содержащий бесцветный комплекс, какого-либо реагента, дающего с экстрагируемым элементом цветную реакцию непосредственно в органической фазе. [c.314]

    HTH30H0Bbift метод [3, 5]. К 50 мл анализируемого раствора, содержащего хлорное золото, добавляют 5 мл 1 и. HjSO и встряхивают в емкости с несколькими порциями раствора дитизона (5 10 М) в четыреххлористом углероде до чисто-зеленой окраски последней порции. После удаления избытка дитизона промыванием объединенных экстрактов разбавленным раствором аммиака (1 1000) золото определяют фотометрически. Определению мешают Pd, Hg (II), Ag и большие количества Си. Палладий можно связать роданидом, ртуть и серебро — реэкстрагировать из органической фазы 2%-ным раствором KJ в 0,01 М H2SO4. Платину необходимо окислить до Pt (IV), которая не реагирует с дитизоном. [c.348]

    Роданид-ион является анионом роданистоводородной кислоты H NS. Она представляет собой бесцветную жидкость с резким запахом и в водных растворах ведет себя как сильная одноосновная кислота. Большинство солей роданистоводородной кислоты хорошо растворимо в воде. Не растворимы соли серебра, меди, ртути (также золота), трудно растворима соль свинца. Ион NS-бесцветен. [c.490]

    Позже были изучены новые реагенты хлорид 2,4,6-трифенилпиридилия (ТФП) и нитрон [19]. ТФП (2%-ный раствор) образует в 0,2 М растворе НС1 осадки с иодидом, роданидом, нитрагом, перхлоратом, перманганатом, бихроматом, гексацианоферри-том(П) и хлоридными комплексами цинка, свинца, кадмия, олова (II), платины(IV) и золота (III). Осадки не образуют фторид, бромид, иодат, хлорат, сульфат, оксалат и хлоридный комплекс железа (III). Реагент можно использовать для гравиметрического определения 40—160 мг перхлората  [c.404]

    Среди различных органических осадителей весьма перспективными являются основные красители или другие соединения, обладающие основными свойствами, которые реагируют с галогенокислотами металлов, образуя труднорастворимые комплексы. Так, давно известны реакции на сурьму, таллий, золото и ртуть [1], основанные на том, что эти металлы в присутствии хлоридов или бромидов образуют с родаминами и акридиновыми красителями окрашенные осадки. Предложены аналогичные микрохимические реакции на цинк в присутствии роданида с акридином [2] и стириловыми красителями [3]. Для разделения ряда металлов используют осаждение гало-генокислот с некоторьпш фармацевтическими препаратами, имеющими основные свойства (диантипирилметан и др. [4]). Подобные же соединения используются и для количественных определений примесей металлов [5—7]. В. И. Кузнецов [8] исследовал процессы осаждения органическими осадителями с применением радиоактивных индикаторов. [c.65]

    Мешающие вещества. Определению мешает тантал, который с фторидом образует НТаРв, а последний взаимодействует с красителями с образованием экстрагирующегося соединения. Мешающее влияние других металлов в сильной мере зависит от присутствия анионов. Так, в присутствии галогенидов и роданидов определению бора мешают галий, индий, таллий, золото и др. Из анионов определению бора мешают роданид, иодид, нитрат и некоторые другие, образующие с красителями соли, экстрагирующиеся неводными растворителями. [c.63]

    Мешающие вещества. Определению фосфора не мешают ионы аммония, натрия, калия, лития, магния, стронция, бария, бериллия, кадмия, кальция, хрома(III), кобальтл, меди(II), марганца (II), никеля, ртути (П), а также анноны — ацетат, борат, бромид, хлорид, иодат, иодид, нитрат и селенит. Ионы золота(III), висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и циркоиила должны отсутствовать. Могут присутствовать в количестве до 1 мг ионы фторида, перйодата, перманганата, ванадата и цинка. Наличие алюминия, железа(III) и вольфрамата не должно превышать 10 мг в пробе. [c.104]


Смотреть страницы где упоминается термин Золото роданид: [c.113]    [c.41]    [c.248]    [c.144]    [c.72]    [c.282]    [c.119]    [c.209]   
Руководство по химическому анализу платиновых металлов и золота (1965) -- [ c.54 , c.56 ]

Краткая химическая энциклопедия Том 2 (1963) -- [ c.11 ]

Основы общей химии Том 3 (1970) -- [ c.60 , c.73 ]




ПОИСК





Смотрите так же термины и статьи:

Роданиды



© 2024 chem21.info Реклама на сайте