Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углекислота физические свойства

Рис. 1-7. Физические свойства газообразной углекислоты при давлении 1 ат. Рис. 1-7. <a href="/info/1707312">Физические свойства газообразной</a> углекислоты при давлении 1 ат.

    Натрий довольно широко применяется в качестве теплоносителя в различных энергетических установках. Он обладает достаточно хорошими физическими и теплофизическими свойствами, позволяющими осуществлять интенсивный теплосъем в различных теплообменных аппаратах (теплотворная способность 2180ккал/кг коэффициент теплопроводности, кал (см-с-град), 0,317 при 21 °С и 0,205 при 100 °С). Вместе с тем натрий характеризуется и существенными недостатками. Он обладает высокой химической активностью, благодаря которой он реагирует со многими химическими элементами и соединениями. При его горении выделяется большое количество тепла, что приводит к росту температуры и давления в помещениях. Он обладает большой реакционной способностью [температура горения около 900 °С, температура самовоспламенения в воздухе 330—360 °С, температура самовоспламенения в кислороде 118°С, минимальное содержание кислорода, необходимое для горения, 5 % объема, скорость выгорания 0,7—0,9 кг/ /(м2-мин)]. При сгорании в избытке кислорода образуется перекись NaaOa, которая с легкоокисляющимися веществами (порошками алюминия, серой, углем и др.) реагирует очень энергично, иногда со взрывом. Карбиды щелочных металлов обладают большой химической активностью в атмосфере углекислого и сернистого газов они самовоспламеняются энергично и взаимодействуют с водой со взрывом. Твердая углекислота взрывается с расплавленным натрием при температуре 350 °С. Реакция с водой начинается при температуре —98 °С с выделением водорода. Азотистое соединение NaNa взрывается при температуре, близкой к плавлению. В хлоре и фторе натрий воспламеняется при обычной температуре, с бромом взаимодействует при темпера- [c.115]

    Основные физические свойства углекислоты [c.305]

    ФИЗИЧЕСКИЕ СВОЙСТВА УГЛЕКИСЛОТЫ Удельный вес [c.18]

    Осушка сырьевого газа и освобождение его от сравнительно легко конденсирующихся примесей (углекислоты,. метана) не представляет больших затруднений и может быть осуществлена методами, хорошо разработанными в промышленном масштабе для воздухоразделительных установок. Наибольшие затруднения связаны с очисткой газа от азота и окиси углерода. Обе эти примеси весьма близки по своим физическим свойствам, и поэтому при затвердевании они образуют смешанные кристаллиты, имеющие температуру тройной точки, промежуточную между чистым N2 (63,ГК) и чистым СО (67,2° К), и упругость пара, также промежуточную между значениями ее для чистого N. и чистого СО [c.114]


    Осадки, полученные из электролитов на основе калиевых солей, обладают лучшими физическими свойствами. Кроме указанных двух основных составляющих, цианистый электролит для серебрения содержит также некоторое количество карбонатов, вводимых искусственно или образующихся вследствие гидролиза цианида и поглощения углекислоты воздуха. Для получения блестящих серебряных покрытий в электролит вводят сероуглерод (1,5—2 мл л), аммиак (2 мл л), гипосульфит (1 Пл) и другие добавки. Получению блестящих электролитических осадков серебра способствует также электролиз с реверсированием тока. Образующиеся при этом осадки имеют более мелкокристаллическую структуру по сравнению с осадками, полученными из обычных ванн (фиг. 113). [c.298]

    Потери от дросселирования зависят от физических свойств холодильного агента (теплоемкости жидкости, теплоты парообразования и критических параметров). Для аммиака потери от дросселирования несколько меньше, чем для фреона-12, но самые большие потери наблюдаются при дросселировании углекислоты. Это объясняется тем, что углекислота дросселируется в области, близкой к критической, где теплота парообразования уменьшается, а пограничные кривые расположены очень полого. Кроме того, потери от дросселирования зависят от интервала т емператур до и после процесса чем меньше интервал температур, тем меньше потери. [c.17]

    Сухой лед — это твердая углекислота, обладающая свойством при атмосферном давлении переходить в газообразное состояние, минуя жидкую фазу. Такой процесс называется сублимацией. Сухой лед представляет собой твердое тело белого цвета. Он химически инертен и безвреден, обладает следующими физическими [c.505]

    Для оценки агрессивности воды по отношению к бетону в анализ включают определение свободной углекислоты и специальное определение так называемой агрессивной углекислоты. При анализе вод, предназначенных для питья, определяют также ионы N 2 и N1 , окисляемость воды и ее физические свойства цвет, запах, прозрачность. [c.23]

    При более продолжительном, чем указано в стандарте, хранении проб физические свойства и химический состав воды под влиянием происходящих в ней физикохимических и биологических процессов изменяются органические вещества разлагаются, одна форма азота переходит в другую, выпадает в осадок гидрат окиси железа. Все это изменяет содержание углекислоты, нитратов, нитритов и железа, а также щелочность, жесткость, мутность, цветность и pH. [c.9]

    Сухой л е д— это твердая углекислота, обладающая свойством при атмосферном давлении переходить в газообразное состояние, минуя жидкую фазу. Такой процесс называется сублимацией. Сухой лед представляет собой твердое тело белого цвета на воздухе выделяет пар за счет образования парообразной углекислоты. Он химически инертен и безвреден. Обладает следующими физическими свойствами удельный вес 1,56 кг л, температура сублимации при атмосферном давлении —79°, теплота сублимации при атмосферном давлении 137 ккал кг, холодопроизводительность с учетом использования низкой температуры паров и отепления их до 0° составляет 152 ккалЫг (по сравнению с водным льдом на единицу веса она больше в 1,9 раз, а на единицу объема в 2,9 раз), теплопроводность 0,33 ккал/м час°С. [c.337]

    Физические свойства. Бесцветный газ. практически без запаха, с кисловатым вкусом. Т. кип. —78 . Плотность по отношению к воздуху 1,524. Легко сжижается в бесцветную подвижную жидкость. 1 кг жидкой углекислоты равен 462 л газа. При выпускании из баллонов охлаждается при расширении и образует твердую массу, похожую на снег. Свеча гаснет в воздухе, содержащем 6—12% СОг. Коэф. раств. углекислоты в воде (л) равен при 20°—0,878, при 30° — 9,738 при 38°—0,6322 (0,6214 по другим данным), при 40 — 0,608. Коэф. раств. в сыворотке крови человека — 0,5794 (0,581 по другим данным). [c.205]

    Физические свойства твердой углекислоты. Фазовая диаграмма для углекислоты приведена на рис. Х.23. Параметры тройной точки М для углекислоты давление 5,28 ата и температ фа —56,6° С. В связи с этим углекислота в жидком состоянии может существовать только при давлениях выше 5,28 атл, а при более низких давлениях, в том числе атмосферном, может быть или в твердом, или газообразном состоянии. [c.385]

    Сухой воздух состоит в основном из азота и кислорода. В сухих топочных (дымовых) газах при полном горении содержится еще некоторое количество углекислоты, а также летучей золы, при неполном горении (генераторный газ) появляются окись углерода и углеводороды. Однако для процесса сущки состав сухого газа значения не имеет, если только газ не образует химических соединений с водяным паром. Поэтому физические свойства сухого газа и воздуха будут отличаться только величиной плотности и теплоемкости при больших содержаниях СО2. [c.14]

    Питательная ценность и усвояемость источников углерода зависит от их физических свойств и химического состава, а также физиологических особенностей микроорганизмов. Поглощенные клеткой органические вещества вовлекаются в сопряженные окислительно-восстановительные реакции. Часть атомов углерода окисляется до СО и СООН в дальнейшем из них образуется углекислота, выделяемая в окружающую среду, другая часть углеродных атомов, восстановившись до радикалов СНз—СН2 = СН, входит в состав клетки. [c.32]


    Ниже приводятся физические свойства для всех трех фазовых состояний углекислоты. [c.468]

    Более глубокое охлаждение, а следовательно, и более высокую степень осушки, можно получить в холодильной установке, в которой в качестве холодильных агентов применяют аммиак, фреон-12, хлорметил, углекислоту и др., физические свойства которых приведены в табл. 40. [c.309]

    Характер процессов цикла в значительной мере определяется физическими свойствами рабочего тела. По физическим свойствам рабочие тела холодильных машин можно разделить на три группы. К первой из них относятся газы и прежде всего воздух, ко второй—пары жидкостей, распространенными из которых являются аммиак, вода, углекислота, сернистый ангидрид, хлористый метил, фреоны и др., к третьей группе—растворы. Из растворов наиболее широко используется водоаммиачный. [c.120]

    Регенеративный цикл термодинамически целесообразен, например, при работе с углекислотой в области выше критической. Вместе с тем приведенный анализ показывает, что термодинамическое совершенство рабочего тела определяется взаимной связью его физических свойств в условиях внешней среды (температурный режим) и характером совершаемого цикла. [c.167]

    ФИЗИЧЕСКИЕ СВОЙСТВА УГЛЕКИСЛОТЫ [c.468]

    Сухоледное охлаждение основано на переходе твердой углекислоты в газообразное состояние, минуя жидкую фазу (сублимация). Эта особенность изменения агрегатного состояния углекислоты обусловлена физическими свойствами ее и положением тройной точки, характеризующей термодинамическое равновесие трех фаз твердой, жидкой и газообразной. Диаграмма равновесия фаз и тройной точки для углекислоты приведена на рис. 2. Давление углекислоты в тройной точке равно 5,28 атм при температуре —56,6°. Следовательно, при атмосферном давлении возможно только твердое и газообразное состояние углекислоты. Поэтому нельзя получить жидкую углекислоту при давлении ц рже 5,28 атм. Газообразная углекислота, охлажденная до насыщения, при температуре ниже критической переходит непосредственно в твердую фазу (снег). [c.7]

    Физические свойства. Твердая углекислота переходит непосредственно в парообразное состояние, минуя жидкую фазу, и получила поэтому название сухой лед. [c.327]

    Гелий обладает физическими свойствами, которые позволяют оценивать этот газ как лучший среди газовых теплоносителей он обладает пренебрежимо малым сечением захвата нейтронов, а экономия нейтронов — одна из важных проблем при проектировании реакторов. Химическая инертность гелия крайне важна — исключается проблема коррозии топливных элементов, структурных материалов, что позволяет повысить температурный уровень в реакторе, а тем самым его энергетическую эффективность. Температурный уровень в реакторе при использовании углекислоты ограничивается возможностью ее взаимодействия с углеродом замедлителей. Гелий не становится радиоактивным под воздействием нейтронной бомбардировки (наличие воздуха приводит к образованию радиоактивного Аг ). Наконец, гелий 20 [c.20]

    Скорость потребления кислорода, а также и углекислоты углеродной поверхностью и связанная с ней интенсивность газообразования зависят от реакционных свойств кокса и физических условий, подчиняясь определенному закону реагирования. [c.334]

    Оксикарбазолы легко карбоксилируются в условиях синтеза Кольбе, т. е. при нагревании натриевой соли с углекислотой под давлением. 2-Ок-сикарбазол-З-карбоновая кислота представляет собой устойчивое практически бесцветное соединение, плавящееся при 273—274° [147]. В этом же патенте приведены физические свойства и описан синтез изомерных оксикарбоновых и диоксидикарбоновых кислот. [c.257]

    Приготовление хлеба начинается с замеса для получения однородного по всей массе теста. Его продолжительность 7— о мин для пшеничного хлеба и 5—7 мин для ржаного хлеба. 0 это время происходят сложные, в первую очередь, коллоидные 0роцессы набухание муки, слипание ее частичек и образование ассы теста. В них участвуют все основные компоненты теста белки, углеводы, липиды, однако ведущая роль принадлежит белкам Белки, связывая воду, набухают, отдельные белковые макромолекулы связываются между собой за счет разных по энергии связей и взаимодействий и под влиянием механических воздействий образуют в тесте трехмерную сетчатую структуру, 0олучнвшую название клейковинной. Это растяжимый, эластичный скелет или каркас теста, во многом определяющий его физические свойства, в первую очередь упругость и растяжимость. В этот белковый каркас включаются крахмальные зерна, продукты деструкции крахмала, растворимые компоненты муки и остатки оболочек зерна. На него оказывают воздействие углекислота и поваренная соль, кислород воздуха, ферменты. В дальнейшем, в ходе брожения теста, клейковинный каркас постепенно растягивается. Основная часть теста представлена крахмалом, часть зерен которого повреждена при помоле. Крахмал также связывает некоторое количество воды, но объем его при этом увеличивается незначительно. Кроме твердой (эластичной) в тесте присутствует и жидкая фаза, содержащая водорастворимые (минеральные и органические) вещества, часть ее связывается нерастворимыми белками при их набухании. При замесе тесто захватывает и удерживает пузырьки воздуха. Следовательно, после замеса тесто представляет собой систему, состоящую из твердой (эластичной), жидкой и газообразной фаз. [c.107]

    Сухой лед — твердая углекислота, которая при подводе тепла непосредственно переходит в парообразное состояние, минуя жидкую фазу. Поэтому твердая углекислота, не оставляюш,ая после себя жидкого следа, и называется сухим льдом. Такое изменение агрегатного состояния — сублимация твердой углекислоты — обусловлено ее физическими свойствами и положением тройной точки, характеризую-ш,ей равновесие твердой, жидкой и парообразной фаз (фиг. 208). [c.304]

    На растворимость химических элементов и их соединений влияют многие факторы. Постоянными из них являются химические и физические свойства самого элемента, переменными — условия среды концентрация водородных ионов, окислительно-восстановительный потенциал среды, концентрация ионов других элементов, наличие газов (углекислоты, кислорода, сероводорода), пластовое давление, температура и др. Все эти условия характеризуют природную обстановку, предопределяющую мета-морфизацию того или иного элемента. [c.263]

    Вторичный нитроизооктан ( H3)3 H(N02) H( H3)2. Был выделен в количестве 2,4 г в виде тяжелого слегка желтоватого масла насыщением его щелочного раствора углекислотой при охлаждении. После перегонки в вакууме физические свойства вторичного нитроизооктана оказались следующие т. кип. 69—71° С (5 мм), < 4 0,9313, Ил 1) 4388 найдено MRo 44,93, для gHi,N02 вычислено MRu 44,76. [c.35]

    На рис. 6 показаны точки системы азо-пропанол — вода (после их приведения к системе углекислота — вода, с использованием переводных коэфициентов изменения физических свойств по Шервуду—Голловею), сравниваемые с результатами опытов по десорбции, перенесенными с рис. 8. Положение точек для высоких концентраций азо-пропилового спирта определено приближенно вычитанием сопротивления в газовой пленке, полученного из данных по абсорбции. Точки для системы алкоголь-вода лежат в том же интервале и имеют те же тенденции к изменениям, как и точки для опытов по десорбции, [c.170]

    Лабораторный анализ проб воды следует производить по возможнскти в ближайшее время после их выемки, так как в противном случае физические свойства и химический состав воды под -влиянием процсходящих в ней физико-химических п би-<)Логических процессов изменяются люжет произойти а) разложение органических веществ, что отразится на величине окис-ляемости, количестве углекислоты, pH б) переход одной формы азота 1В другую, что пов.лечет за собой изменение величин НН4, N02, N03 II др. в) изменение в величине шелочности, жесткости. кальция, сухого остатка, а также ряд других из Ie-нений. [c.49]

    При поисковых и разведочных работах на редкие газы до последнего времени определение гелия и аргона в газах не производилось, поскольку для этого требовался жидкий воздух, иметь который в полевых условиях не представлялось возможным. Поэтому для определения редких газов пробы газа обычно посылались в Москву или Ленинград. Подобное положение представляло большие неудобства, так как работа геологов происходила вслепую, из-за чего и темп поисковых и разведочных работ сильно задерживался. За последнее время было предложено два метода определения редких газов без применения жидкого воздуха первоначально —метод Соколова с определением Пе и А по отдельности путем измерения физических свойств смеси редких газов, и вскоре после него—метод Черепенникова с определением Не фракционировкой газа углем, охлажденным твердой углекислотой. Применение этих методов дало возможность впервые в 1931 г. провести определение редких газов без применения жидкого воздуха в районах разведок. Следует заметить, что прибор Черепенникова является все-таки прибором стационарного тина. Большие количества ртути и углекислоты в баллонах, требуемые для работы прибора, не дают возможности пользоваться им как переносным прибором при поисковых работах. В противоположность прибору Черепенникова приборы Соколова являются именно приборами переносного типа и вполне пригодны для анализов газа как при поисковой, так и разведочной работе. Количества ртути и реактивов, необходимые для работы прибора Соколова, очень невелики, так что прибор со всеми необходимыми для анализа реактивами легко может переноситься одним человеком. [c.33]

    IV фактор. Взаимодействие Н2504 с карбонатными компонентами пласта приводит к увеличению проницаемости пласта вследствие уменьшения физического объема скелета породы и к образованию углекислоты. При, закачке 1 т концентрированной серной кислоты может образоваться до 0,4 т двуокиси углерода, которая обладает хорошими нефтевытесняю-щими свойствами. [c.136]


Смотреть страницы где упоминается термин Углекислота физические свойства : [c.196]    [c.11]    [c.190]    [c.169]    [c.63]    [c.282]    [c.11]    [c.204]    [c.215]   
Холодильная техника Кн. 1 (1960) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Углекислота



© 2025 chem21.info Реклама на сайте