Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен получение из природного газа

    Опубликована работа [126] по сравнительной оценке различных методов производства ацетилена. Авторы этой работы на основании анализа большого фактического зарубежного и отечественного материала подвергают сомнению правильность вывода о том, что карбидный метод производства ацетилена по экономическим показателям уступает методам производства ацетилена из углеводородного сырья. На основании данных предприятий, действующих в СССР, авторы делают заключение, что по всем показателям (капиталовложения, себестоимость и энергозатраты) ацетилен, полученный окислительным пиролизом природного газа и особенно электрокрекингом, уступает ацетилену, полученному из карбида кальция (табл. V. 10). [c.169]


    Не умаляя большого практического значения способов получения молекулярного водорода методом конверсии водяным паром и двуокисью углерода и мономолекулярной дегидрогенизацией на активных катализаторах, следует отметить, что способ, связанный с получением водорода в результате полимолекулярных превращений углеводородов в настоящее время представляется все более и более перспективным. Это связано с тем, что водород получают здесь наряду с другими целевыми продуктами, в том числе с такими продуктами крупнотоннажного производства, как термическая сажа, пирографит и др., вместе с ароматическими углеводородами, ацетиленом и Т. д. Основным сырьем для получения водорода по этому способу может служить метан, являющийся главным компонентом природного газа, а также другие газообразные, жидкие и твердые парафиновые углеводороды, входящие в состав нефтей, т. е. все то же природное сырье, проблема рациональной переработки которого еще не решена полностью. Поэтому последнее обстоятельство делает любые работы, связанные с исследованием полимолекулярной дегидрогенизации углеводородов в ходе их поликонденсации при кок-сообразовании, весьма актуальными. [c.164]

    Ацетилен является исходным сырьем для синтеза ряда важных продуктов. Перспективными методами получения ацетилена являются термоокислительный пиролиз природного газа и плазменный метод (из углеводородного сырья). Значительное количество ацетилена получают из карбида кальция. [c.20]

    Ход урока. Учитель, указав на два способа получения ацетилена — карбидный и из природного газа, рассматривает первый способ, обращая внимание на экономическую сторону. Затем отмечает, что ацетилен, получаемый из природного газа, дешевле ацетилена, получаемого по карбидному способу. Почему На этот вопрос отвечают сами учащиеся. После этого учитель предлагает им самостоятельно разобраться в получении ацетилена вторым способом. [c.170]

    Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]


    Плазма, созданная в различных средах (водороде, азоте, кислороде, благородных газах и др.), позволяет реализовать такие эндотермические реакции, которые в обычных условиях протекают медленно или даже не могут идти по термодинамическим причинам. Так, в кислородной плазме синтезируют оксид азота при получении азотной кислоты, в водородной плазме восстанавливают металлы из руд, в плазме электрической дуги получают ацетилен и технический водород из природного газа, непредельные углеводороды — из бензина и т. д. [c.42]

    Карбид кальция СаСг используют для получения ацетилена (ацетилен получают также переработкой природного газа). [c.367]

    Эта реакция принадлежит к уникальному классу реакций. Ее проводят в режиме окислительного дегидрирования, но она не является каталитической. Ранее говорилось, что дегидрирование этана в этилен — относительно высокотемпературный процесс. Дегидрирование метана в ацетилен представляет собой чрезвычайно высокотемпературную реакцию и идет при 1300— 1600°С, когда равновесие наиболее сильно сдвинуто в сторону образования этилена. Очевидно, металлические реакторы не могут быть использованы для реакции парциального окисления природного газа (метана) в силу того, что реакция происходит при температуре, превышающей температуру плавления нержавеющей стали или любых других распространенных металлов. Поэтому реакторы футеруют огнеупорным кирпичом, а теплообмен и теплоотвод осуществляют до контакта горячих газов с неметаллическими поверхностями. При более низких температурах контакт газов с металлическими поверхностями допустим, и окончательный отвод тепла производится в металлическом теплообменнике. Сильно нагретые продукты реакции охлаждаются путем впрыскивания воды непосредственно в газовый поток (рис. 4). При этом вода превращается в пар, который вместе с продуктами должен быть охлажден экономично и с пользой. При получении ацетилена его быстрое охлаждение является одной из решающих операций, препятствующей гидрированию ацетилена в этилен или этан. [c.148]

    Карбидный ацетилен уступает свои позиции ацетилену из природного газа и нефти. В общем потреблении ацетилена в промышленности органического синтеза доля карбидного сократилась с 72% в 1957 г. до 65% в 1961 г. Ацетилен из нефти и природного газа займет еще большую долю в потреблении, так как удалось разработать экономически выгодные методы его получения. В то же время ввиду роста цен на электроэнергию и уголь нельзя ожидать существенного удешевления ацетилена из карбида кальция. [c.138]

    Методам, основанным на концепции получения водорода путем проведения реакций взаимодействия горючих веществ (природный газ, другие газообразные и жидкие углеводороды, кокс и т. п.) с водяным паром, в настоящее время отдается почти исключительное предпочтение. Термохимические и термодинамические расчеты позволяют определить минимальный (теоретический) расход топлива и максимальный выход продукта. В выборе одного из рассмотренных методов решающее значение имеет экономический расчет. Особенно заслуживает внимания метод 7 ввиду одновременного получения ценного побочного продукта — ацетилена. Ацетилен образуется как лабильный продукт одной из нескольких реакций, происходящих одновременно, и его удается выделить благодаря быстрому охлаждению системы. В этом случае предварительный анализ не дает результата, поскольку ни стехиометрический, ни термодинамический расчеты не позволяют определить выход ацетилена, который зависит главным образом от кинетических условий проведения реакции (например, формы реакционного пространства, скоростей потоков, скорости нагревания и охлаждения газовой смеси и т. п.). Для оценки концепции обязательно нужно провести исследования в промышленном масштабе. [c.61]

    Чаще всего баллонный водород содержит небольшие количества кислорода. Нередко в нем встречаются галогены (главным образом хлор) и соединения серы. Водород, полученный из природного газа или легких углеводородов, может содержать галогены, серу, щелочь, диоксид углерода, азот и даже ацетилен и этилен. [c.105]

    Сырьем для получения аммиака служит смесь азота и водорода. Водород для этой смеси получают разными способами, из которых наиболее распространенными являются конверсия природного газа (метана) и других углеводородных газов комплексная переработка природного газа в ацетилен и синтез-газ фракционное разделение горючих газов, в частности, коксового, методом глубокого охлаждения газификация твердого и жидкого топлива с последующей конверсией окиси углерода электрохимический способ получения водорода. [c.113]


    Ацетилен. Ацетилен служит исходным сырьем для синтеза большого числа продуктов нефтехимической промышленности. Растущий из года в год спрос на ацетилен вызвал необходимость разработки новых экономичных способов его получения. В настоящее время в промышленности освоен способ производства ацетилена из природного газа — термоокислительным пиролизом метана, т. е. расщеплением метана за счет сжигания части газа с кислородом, подаваемым в процесс. [c.29]

    Процесс получения ацетилена методом неполного сжигания, в котором сырьем являются метан из природного газа и 90—95% ный кислород, эксплуатируется в промышленном масштабе в США, Италии, а также в Германии. В этом процессе на каждую весовую часть ацетилена получают не менее 2 весовых частей газа синтеза (00 + На), поэтому описанный процесс применяют там, где одновременно имеется производство синтетического аммиака или синтетического метанола. Такое применение смеси СО и Иг более выгодно, чем использование ее в качестве энергетического топлива. Метод частичного сожжения углеводородного сырья можно рассматривать как вариант метано-кислородного процесса (гл. 3), в котором часть метана превращается в весьма ценный ацетилен. [c.279]

    Ацетилен является ценным исходным веществом для многих промышленных синтезов. Из него по реакции Кучерова получают уксусный альдегид, который затем, как уже было сказано, переводят либо в уксусную кислоту, либо в этиловый спирт. Ацетилен служит исходным материалом для получения особого вида синтетического каучука (полихлоропренового), пластических масс, из него получают различные растворители он может быть исходным веществом для синтеза ароматических углеводородов и т. п. Все эти крайне разнообразные и ценные продукты, таким образом, получаются через ацетилен из весьма доступного сырья — извести и угля или из метана природных газов. [c.90]

    Кислородно-ацетиленовые горелки используются при резке и сварке металлов. Благодаря своей ненасыщенности ацетилен используется как исходное вещество при получении различных органических соединений. Однако здесь ацетилен вытесняется более дешевым этиленом. В промышленности ацетилен получают из природного газа. Главным продуктом неполного сгорания метана, основного компонента природного газа, является ацетилен  [c.594]

    В настоящее время основным сырьем в производстве аммиака являются природный газ, попутные газы нефтедобычи, жидкие углеводороды и коксовый газ. Доля аммиака, получаемого из твердого топлива и электролитического водорода, все более снижается. При современных методах получения аммиака все большее значение приобретают процессы очистки газа. Из технологических газов на разных стадиях получения аммиака удаляют такие примеси, как сернистые соединения, двуокись и окись углерода, ацетилен, окислы азота, кислород и др. Эти примеси, содержащиеся в газе в различных концентрациях, по-разному влияют на процесс. Например, сернистые соединения оказывают сильное влияние на все катализаторы, применяемые в синтезе аммиака серосодержащие соединения, присутствующие в исходном углеводородном сырье, ухудшают работу катализаторов конверсии метана, что приводит к повышению температуры процесса и увеличению расхода кислорода. При использовании наиболее экономичного способа производства аммиака, который основан на методе бескислородной каталитической конверсии метана в трубчатых печах, содержание сернистых соединений в природном газе не должно превышать 1 мг/м . [c.7]

    Ацетилен, полученный из природного газа. [c.313]

    Описание процесса (рис. 20). Основой процесса является новая конструкция горелки-реактора для получения ацетилена. Ацетилен образуется в результате реакции частичного сгорания. Кислород и природный газ предварительно смешивают и подогревают в специальной печи до более высокой температуры, чем в других известных процессах производства ацетилена. Нагретая смесь подается в реактор оригинальной конструкции. Часть сырья сгорает с кислородом, выделяя тепло, необходимое для крекинга остального количества сырья до ацетилена и водорода. Для сохранения [c.42]

    Для получения ацетилена из более насыщенного сырья, например природного газа, пропана или газойля, необходимо затратить большие количества энергии. Это видно из рис. 1, па котором показана теплота образования ряда углеводородов, имеющих важное значение как потенциальное сырье для производства ацетилена. Приведенные на рис. 1 величины фактически представляют частное от деления теплоты образования на число углеродных атомов в исходных углеводородах. Энергию, требуемую для превращения любого из рассматриваемых углеводородов в ацетилен при любых значениях температуры в пределах, охваченных этими данными, можно найти как удвоенную разность энергий образования ацетилена и [c.234]

    В последние годы в промышленности широко применяется получение ацетилена нри неполном горении метана в кислороде. По технико-экономическим показателям этот процесс является одним из наиболее эффективных процессов получения ацетилена из метана. В Советском Союзе он внедряется на ряде заводов на основе переработки природного газа и последующего использования отходящих газов Для производства аммиака и метанола. Образующийся при неполном окислении метана в кислороде ацетилен является термодинамически неустойчивым он легко разлагается на углерод и водород, а также взаимодействует с углекислотой и водяным паром с образованием окиси углерода и водорода. Схема процесса приводится на рис. V. 2. Сырье (природный газ или метан), не содержащее окиси углерода, водорода и высших углеводородов (так как в противном случае оно преждевременно воспламенится), поступает через подогреватель 1, где нагревается до 600° С, в верхнюю часть реактора 3 (в смесительную камеру горелки), куда подается также подогретый до той же температуры кислород в количестве до 65 объемн. % от метана. В результате процесса горения температура в реакторе 3 поднимается до 1500° С продукты реакции охлаждаются до 80° С орошением водой. [c.148]

    Использование новых видов сырья. Для производства многих химикатов можно использовать различные виды исходного сырья. Так, водород для синтеза аммиака можно получать из водяного, коксового и природного газа, нефти и ее фракций ацетилен — из карбида кальция, природного газа и нефти поливинилхлорид — из ацетилена и этилена и т. д. Получение конечного продукта из более дешевого исходного сырья при прочих равных условиях дает возможность монополиям снижать в ходе конкурентной борьбы цены и получать при этом сверхприбыль. [c.201]

    Получение. В промышленности ацетилен получают главным образом из природного газа — метана  [c.41]

    Оказалось, что все эти затруднения можно преодолеть, если работать в вакууме (под давлением около 0,5 ата), продолжая производить разбавление водяным паром, чтобы парциальное давление углеводорода было очень низким [2]. Водяной пар добавляли в количестве 5 молей на 1 моль углеводорода, а поэтому парциальное давление последнего было меньше 0,1 ата. В настояш,ее время печи Вульфа работают с четырехтактным циклом первые два такта состоят из пиролиза и нагрева потока газов, двигающегося в одном направлении, и вторые два такта — из пиролиза и нагрева газа, двигающегося в противоположном направлении. Продолжительность каждого такта равна 1 мин. Непрерывность процесса достигается за счет установки печей Вульфа попарно. Чтобы свести к минимуму разложение ацетилена, время пребывания газов в зоне реакции снижено до 0,03 сек. Кладка регенеративных печей выполнена из алундовых кирпичей (99% AljOj). В табл. 58 приведены результаты, полученные при пиролизе в ацетилен природного газа (95% метана), этана и пропана. [c.274]

    Главнейшими направлениями переработки природных газов являются пиролиз (на ацетилен, водород и газовую сажу), неполное окисление (до окиси углерода), хлорирование (с целью получения хлорсодержащих растворителей. В семилетнем плане уделяется особенно большое внимание химической переработке природных газов. [c.15]

    Како/ объем хлороводорода (ири п. у.) должен присоединиться к ацетилену, полученному из природного газа объемом 1 м (объемная доля в нем СН4 0,98), чтобы получить винилхлорид при 90%-ном выходе Какой объем випилхлорида образуется  [c.256]

    Исходный газ для производства растворенного ацетилена получают преимущественно из карбида кальция. Вследствие большой разобщенности потребителей растворенного ацетилена и сложности производства ацетилена из природного газа можно предположить, что карбидный способ получения исходного газа на ацетилено-наполнительных станциях еще длительное время будет занимать ведущее место. Поэтому ниже рассмотрены характерные аварии, связанные как с наполнением баллонов ацетиленом, так и с получением ацетилена из карбида кальция на установках малой производительности. [c.37]

    Ацетилен является ценным сырьем для производства ацеталь-дегида, хлорвинила, винилацетата, акрилонитрила и неопренового каучука. Перечень продуктов, производимых из ацетилена, см. у Лоуи (Lowy) и Реппе (Reppe) [228, 229]. Ацетилен все еще получают в больших количествах из карбида кальция, но также применяется и прямое производство из естественного газа. Возможны следующие методы получения ацетилена из природного газа  [c.575]

    Получение ацетилена и хлористого водорода. Современное промышленное производство ацетилена основано на переработке углеводородного сырья — природного газа, этана, газового бензина и других нефтяных про- дуктов — электрокрекингом, термоокнслнтельным пиролизом и др. Находит применение и старый метод получения ацетилена разложением карбида кальция водой. Ацетилен, используемый для синтеза хлоропрена,"должен отвечать следующим требованиям [65, с. 78]  [c.226]

    В настоящее время развивается новый метод проведения реакций, так называемый плазмоструйный, или метод п дазмотро-нов. В этом случае получают высокотемпературную плазму (например, водородную или пароводяную), быстро пропуская водород или водяные пары через сильноточную дугу. Благодаря большой скорости протока газа удается вытянуть плазму из зоны разряда. Вне разряда эта плазма смешивается со струей холодного реагирующего вещества, например, предельного углеводорода. При смешении происходит быстрое охлаждение плазмы, но при этом молекулы углеводорода подвергаются крекингу, т. е. разлагаются. Затем, благодаря вторичным процессам образуются продукты реакции. Таким способом удается, например, провести крекинг природных газов (метана и др.). В результате реакции получается главным образом ацетилен. Этот способ экономически выгоднее других способов получения ацетилена. [c.306]

    Для синтеза хлорпроизводных метана исходят из метана 99%-ной чп-стоты. Метанол получается непосредственно из природного газа, но тщательно очищенного от сероводорода и органической серы [24]. Сероуглерод производится также из природного газа, содержащего преимущественно метан с минимальным количеством углеводородов Сз [24]. Для производства ацетилена окислительным крекингом метана необходимо отделение этого носледиего от и СО. В электрической дуге ацетилен успешно получается из 90—92%-ного метана, а в циклично действующих регенеративных печах Вульфа пиролизу подвергается природный газ без разделения его на фракции [24]. Для получения альдегидов окислением углеводородов также нет необходимости выделять метан из природного газа. Промышленный способ окисления СН4 па фосфатах алюминия и меди проводится на сырье, содержащем 60% СЫ4 [27]. [c.159]

    Эта реакция открыта в 1852 г. Вёлером, но практическое значение она приобрела лишь после того, как был разработан способ получения карбида кальция сплавлением извести и кокса в электрической печи. В настоящее время большое промышленное значение приобретают способы получения ацетилена из нефтяного сырья и природных газов. Метан превращается в ацетилен под кратковременным (сотые доли секунды) воздействием очень высоких температур 0400 С и выше)  [c.93]

    Хлоропреновый каучук получают методом эмульсионной полимеризации хлоропрена. Исходными продуктами для синтеза хлоропрена являются ацетилен и хлороеодород. Ацетилен производят из карбида кальция или из природного газа. Переработка ацетилена в хлоропрен включает в себя следующие стадии получение моновинилацетилена посредством каталитической полимеризации ацетилена получение хлоропрена гидрохлорированием моновинилацетилена. Газообразный хлороводород, необходимый для гидрохлорирования моновинилацетилена, получают одним из следующих способов сульфатным (разложение поваренной соли серной кислотой) или сжиганием хлора в токе водорода. [c.205]

    Твердые осушители — адсорбенты — предпочтительны в случае необходимости удаления из газа, наряду с осушкой, других вредных химических шединений, так как одповремеиио селективно удаляются ацетилен, алифатические, ароматические и серосодержащие углеводороды. Установки адсорбционной осушки используют на промыслах для осушки природных газов, поступающих с отдельных скважин, на головных сооружениях магистральных газопроводов, расположенных в северных районах, в процессе сжижения природного газа, получения гелия, на газобензиновых и нефтехимических заводах. [c.112]

    Систематическое исследование определения меди было проведено Алланом [222]. Полученная им чувствительность определения меди в водных растворах с использованием пламени воздух — природный газ составила 0,1 мкг/мл. В более высокотемпературном пламени воздух — ацетилен чувствительность была на 50% ниже. Гейтхауз и Уиллис [19] в пламени воздух — природный газ достигли тех же результатов. Славин и другие [223] получили чувствительность 0,2 мкг/мл в пламени воздух — ацетилен. Несмотря на хорошее совпадение результатов упомянутых выше авторов, работавших с различными приборами, и в разных странах, значительно позже (в 1965 г.) появилась работа, в которой описываются аналитические условия определения меди [224]. Чувствительность определения меди в пламени воздух — светильный газ на приборе фирмы Hilger Watts составила 1 мкг/мл. Авторы не пытались объяснить, почему была получена столь плохая чувствительность. [c.103]

    Ацетилен, служивший до создания крупной нефтехимич. пром-сти единственным видом сырья для получения многих мономеров (напр., хлоропрена, ви-лилацетата, винилхлорида, акрилонитрила), до 60-х гг. получали только из карбида кальция. Для этого процесса характерны высокая материалоемкость, значительный расход электроэнергии, тяжелые условия труда. В последующие годы в ряде стран была реализована технология произ-ва ацетилена из углеводородного сырья (табл. 8), в первую очередь методом термоокислительного пиролиза природного газа. Эксплуатационные и капитальные затраты на получение ацетилена этим методом в 1,5 раза ниже, чем при его произ-ве из карбида кальция. В СССР в 1970 из природного газа получали половину всего производимого ацетилена. [c.288]

    За последние годы в СССР введены в действие предприятия по получению ацетилена из природного газа и низкооктанового бензина. В СССР освоены наиболее совершенные методы производства ацетилена — окислительный ниролиз, электрокрекинг и плазменный ацетилен [1, 7]. В ряде районов страны введены в действие новые производства по получению карбида кальция. Таким образом, производство ацетилена продолжает развиваться, обеспечивая растущие потребности промышленности органического синтеза. [c.6]

    Плазмохимическому получению ацетилена из природного газа посвяще-30 значительное количество работ. Наиболее разработанным в промышленном отнршении оказался процесс получения ацетилена из природного газа непосредственно в электрическом разряде, так называемый электрокрекинг, промышленно реализованный в Германии еще в 1940 г. В настоящее время работают промышленные установки мощностью 10 кет в ФРГ, СРР, СССР, США. Лучшие показатели электрокрекинга природного газа таковы [12] общая степень превращения 70%, степень превращения в ацетилен 50%, содержание ацетилена в продуктах до 14,5 объемн. % при затратах электроэнергии 13,6 квШ Ч на 1 нм природного газа. Однако в продуктах содержится значительное количество сажи, гомологов ацетилена процесс плохо поддается управлению и оптимизации. [c.363]


Смотреть страницы где упоминается термин Ацетилен получение из природного газа: [c.119]    [c.22]    [c.148]    [c.3]    [c.204]    [c.20]    [c.245]    [c.4]    [c.369]   
Очистка технических газов (1969) -- [ c.358 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилен получение

Получение газа

Природные газы



© 2025 chem21.info Реклама на сайте