Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галогенирование в ароматическом ряду

    Реакции электрофильного замещения наиболее характерны для ароматических соединений, хотя известны и реакции нуклеофильного замещения и радикальные реакции. Кроме того, реакции электрофильного замещения в ароматическом ряду имеют большое практическое значение для синтезов, используемых в лаборатории и промышленности. Наиболее важные из них алкилирование, нитрование, сульфирование и галогенирование, в меньшей, но все же значительной степени — ацилирование. [c.22]


    Реакции электрофильного замещения — нитрование, сульфирование, галогенирование, ацилирование, алкилирование в ароматическом ряду относятся к числу важнейших, так как позволяют перейги от углеводородов или их гетероциклических производных к любым их функциональным производным. [c.219]

    К реакциям электрофильного замещения 8е относятся процессы замещения водорода в ароматическом ряду, реакции нитрования и сульфирования, галогенирования в присутствии катализа торов, реакции обмена металлов в металлорганических соединен ниях и т. п. Наиболее изучены реакции обмена металлов в металлорганических соединениях. При этом возможны три механизма реакций. [c.219]

    К процессам тонкого органического синтеза относятся реакции органических веществ алифатического и ароматического рядов реакции нитрования, сульфирования, галогенирования и др. Эти реакции находят применение в производстве органических красителей и промежуточных продуктов, сиитетических лекарственных средств и других органических веществ. [c.18]

    В данной главе будут рассмотрены реакции взаимодействия ароматических соединений с электрофильными реагентами, которые, как правило, приводят к образованию продуктов замещения. Обычно при этом в качестве уходящей группы выступает протон. Это нитрование, сульфирование и галогенирование ароматических соединений, алкилирование и ацилирование ароматических углеводородов по Фриделю —Крафтсу, азосочетание, хлорметилирование и ряд других. Все эти реакции идут по общей схеме  [c.361]

    Глава XI. АНАЛИЗ ПРОДУКТОВ ГАЛОГЕНИРОВАНИЯ УГЛЕВОДОРОДОВ ЖИРНОГО И АРОМАТИЧЕСКОГО РЯДОВ [c.125]

    Поэтому они способны атаковать ароматические соединения по типу электрофильного замещения (азосочетание). Эта реакция вполне аналогична типичным электрофильным реакциям замещения в ароматическом ряду — нитрованию, сульфированию, галогенированию и т. д. [c.526]

    Галогенирование ароматических углеводородов имеет определенное значение для производства ряда диэлектриков, ядохимикатов, мономеров, разнообразного сырья для производства красителей. Чаще всего проводится хлорирование ароматических углеводородов в присутст1вии катализаторов — галогенидов металлов. [c.32]

    Характер действующего реагента при галогенировании ароматических соединений в ядро был установлен на основании ряда экспериментальных данных. [c.341]

    Результаты кинетического и химического исследований нитрования и галогенирования в ароматическом ряду [c.342]

    Наиболее хорошо изученные реакции замещения водорода в ароматическом ряду—реакции нитрования при действии концентрированной азотной кислоты, реакции галогенирования, сульфирования, реакция Фриделя-Крафтса—протекают с гетеролитическим разрывом связей и относятся с точки зрения электронной классификации к реакциям типа 5 с гетеролитическим разрывом связи происходит также замещение галогенов гидроксильной или аминогруппой (тип 8м). [c.881]


    НЕКОТОРЫЕ СОВРЕМЕННЫЕ ДАННЫЕ О РЕАКЦИОННОЙ СПОСОБНОСТИ И ОРИЕНТАЦИИ ПРИ РЕАКЦИЯХ ГАЛОГЕНИРОВАНИЯ В АРОМАТИЧЕСКОМ РЯДУ [c.275]

    Многочисленные реакции электрофильного замещения в ароматическом ряду играют важную роль в промышленных синтезах ценных целевых продуктов. В основе этих технологических процессов лежат реакции галогенирования, сульфирования, нитрования, алкилирования, ацетилирования. [c.436]

    Реакции электрофильного замещения, к числу которых относятся важнейшие для химии и технологии соединений ароматического ряда реакции сульфирования, нитрования, галогенирования, алкилирования, азосочетания и другие, изучены наиболее подробно. [c.380]

    Ароматические галогенпроизводные. Роль катализатора в реакции галогенирования. Замещение в ядре и боковой цепи. Различие условий проведения этих реакций. Химические свойства ароматических галогенпроизводных. Сравнение подвижности галогена в галогенпроизводных ароматического и алифатического рядов. Отдельные представители. [c.171]

    Однако при высокой температуре возможно галогенирование ароматических соединений и по радикальному механизму. Так, бромированне бромбензола при 450—500 °С ведет к преимущественному образованию л1-дибромбензола, тогда как обычно в соответствии с правилами ориентации образуется смесь о- и п-дибром-бензолов. Разница в механизмах галогенирования соединеиий жирного и ароматического рядов ведет к тому, что в присутствии Fe lj галогенирование жирно-ароматических соединений можно направить в ядро, тогда как УФ-облучение и повышенная температура способствуют замещению водородного атома в боковых цепях. [c.390]

    Нитрозирование в кольцо представляет собой реакцию электрофильного замещения в ароматическом ряду, причем атакующим реагентом служит нитрозоний-ион N0+ или какие-то иные частицы (HjO+—N0 или NO I), которые могут легко переносить N0+ на кольцо. Нитрозоний-ион — очень слабый злектрофил по сравнению с реагентами, участвующими в нитровании, сульфировании, галогенировании и реакции Фриделя — Крафтса ни- [c.722]

    Обычно реакции электрофильного замещения протекают при действии достаточно энергичных электрофильных реагентов к реакциям такого типа в ароматическом ряду относятся хорошо изученные процессы электрофильного замещения водорода реакции нитрования и сульфирования, реакция Фриделя—Крафтса, а также галогенирование в присутствии катализаторов—Al lg и т. п. В противоположность реакциям ароматических веществ реакции нитрования и галогенирования предельных соединений алифатического и алициклического ряда протекают по радикальному механизму (стр. 870 и 876). [c.327]

    Выяснению закономерностей и установлению эмпирических правил при реакциях замещения в ароматическом ряду посвящено большое количество работ (Фрея, Форлендера, Флюршейма, Голлемана, Робинзона и Ингольда с сотрудниками) [1]. Было установлено, что в незамещенном бензоле всё атомы водорода равноценны. При наличии же заместителей эта равноценность нарушается, вследствие чего место, на которое вступает новая группа при реакциях нитрования, сульфирования и галогенирования, определяется природой первого заместителя. Все заместители по их влиянию на направление вышеуказанных реакций можно разбить на две группы  [c.337]

    Прочность связи галогена в галогенированных ароматических углеводородах сильно зависит от их строения. Связь С—галоген в них имеет значительно меньшую полярность, чем в галогенпроизводных алканов. В результате связанный с галогеном углерод ароматического ядра менее положителен, атака на него нуклеофильных реагентов затруднена и атом галогена, связанный с атомом углерода бензольного ядра, не отщепляется ни щелочью (водной или спиртовой), ни спиртовым раствором нитрата серебра. Столь малая реакционная способность галогена сближает галогенпроизводные этого типа (например, хлорбензол) с соединениями жирного ряда, содержащими галоген у атома углерода, связанного с другим атомом углерода двойной связью, например с хлористым винилом СН2 = СНС1. [c.198]

    Реакции замещения атома водорода в парафиновых соединениях имеют лишь формальное сходство с реакциями замещения в ароматическом ряду. Галогенирование, нитрование, сульфирование и другие реакции замещения протекают для соединений парафинового и циклопарафинового ряда в таких условиях, которые способствуют образованию свободных радикалов. Свободиорадикальный механизм особенно четко проявляется в реакциях галогенирования. [c.528]

    Сходство между реакциями электронов с ароматическими соединениями и другими процессами замещения в ароматическом ряду исследовали методом ар-корреляций на примерах реакций гидратированных электронов с пара-замещенными производными бензойной кислоты, лгета-замещенными толуолами и /гара-замещен-ными фенолами [120]. В этих случаях также были получены прекрасные корреляционные прямые между т) и а. Однако в отличие от таких реакций, как галогенирование и нитрование, значения р для реакций гидратированных электронов с этими соединениями варьировали в широких пределах. Неаддитивность величин г] можно объяснить тем, что имеется несколько факторов, определяющих реакционную способность электрона при взаимодействии его с моно- и дизамещенными бензолами. В первом случае важным фактором является распределение п-электронной плотности по кольцу, тогда как для дизамещенных продуктов значение приобре- [c.136]


    При хлорировании фенилизоцианата в тетрахлорэтане были получены как 4-хлор-, так и 2,4-дихлорфенилизо-цианаты . Хлорирование алкилароматических изоцианатов по алкильной группе проводили при облучении ртутной лампой . Галогенирование ароматических изоцианатов описано в ряде патентов . [c.114]

    Дено и Линкольн [56] также указали, что в учебниках часто появляется большое количество ошибок, касающихся бромирования циклопропана. Например, обычно приводится один продукт реакции — 1,3-дибромпропан — и не указывается катализатор, хотя для аналогичной реакции брОмирования в ароматическом ряду, как правило, в качестве катализатора используется РеВгз. В конкурирующем эксперименте с бензолом и циклопропаном в реакции бромирования, катализируемой РеВгз, при —12 °С и с ограниченным количеством брома образуется только бромбензол и бромистый пропил (из НВг и циклопропана) и не образуется дибром-пропана. Отсюда можно сделать вывод, что циклопропан гораздо менее активен по отношению к Вг+, чем бензол, и что кислота Льюиса как катализатор более необходима для бромирования циклопропана, чем для бромирования бензола. Вслед за этой работой были более подробно обсуждены [57] ошибки, обнаруженные в учебниках, касающиеся реакций галогенирования циклопропана. [c.383]

    Основные типы реакций, в которых участвует ароматическое ядро, включают замещение, присоединение и окисление. Наиболее часто встречаются реакции электрофильного замещения. Сводка важнейших реакций замещения бензола приведена на рис. 22-7 к их числу относятся галогенирование, нитрование, сульфирование, алкилирование и ацилирование. Существует определенное сходство между реакциями замещения в ароматическом ряду, приведенными на рис. 22-7, и реакциями электрофильного присоединения к алкенам (I, разд. 7-4,А). Действительно, многие из реагентов, которые обычно присоединяются к двойным связям алкенов, замещают также водород ароматического ядра (например, СЦ, Вга, Нз504, Н0С1, НОВг). Кроме того, реакции обоих типов представляют собой полярные стадийные процессы, происходящие с участием электрофиль-ных агентов лимитирующая стадия состоит в атаке электрофила на углерод, приводящей к образованию промежуточного катиона. Эта стадия может быть представлена приведенными ниже общими уравнениями, где в качестве атакующего агента выступает либо катион с формальным положительным зарядом X , либо нейтральная, но поляризованная молекула Х Ф—УвЭ. [c.182]

    Получаемые в процессе галогенирования хлорпроизводные и бромпроизводные являются промежуточными продуктами для целого ряда производств. Из галогенопроизводных ароматического ряда важнейшим является хлорбензол, применяемый иногда как промежуточный продукт, а в некоторых случаях — как среда для ведения реакции, йод, бром и фторпроизводные применяются реже, что объясняется главным образом экономическими соображениями. Хлор является дешевым галогенирую-щим агентом, так как производство его возрастало интеноивнее потребления. [c.32]

    В промышленности органического синтеза хлор используют для реакций галогенирования ароматических соединений, служащих исходным сырьем для получения аминов, фенолов и других продуктов. Однако процессы производства хлор-органических соединений, а также ряд процессов неорганической технологии, например гидролиз хлорида магния с целью получения оксида магния или переработка хлорида калия и по-лиминеральных калийных руд на бесхлорные удобрения, сопровождаются образованием хлороводорода в качестве побочного продукта. [c.115]

    Первые главы книги, в которых излагаются основы теории строения молекул, природа химической связи, электронные эффекты, физические свойства молекул, представления об ароматичности и классификация реагентов и реакций, принципиально не отличаются от первого издания. Последующие главы, связанные с механизмами органических реакций, существенно изменены и дополнены. Так, сильно расширена глава, посвященная замещению в ароматическом ряду, в результате включения в нее реакций нуклеофильного и радикального замещения в бензольном ядре. Естественно, что основная часть этой главы посвящена электрофильному замещению в бензольном кольце. Этот раздел также существенно расширен за счет новых данных, полученных в 1953—1969 гг. В первом издании основные закономерности в ароматическом ряду (природа электрофильного агента, механизм реакции, правила ориентации) разбирались на примере реакции нитрования. Во втором издании эти вопросы оказалось более удобным разбирать на примере галогенирования, поскольку большинство имеющихся в настоящее время данных получено именно для этой реакции. Кроме классических реакций электрофильного ароматического замещения, где уходящей группой является протон, рассмотрена большая группа реакций протодеметаллирования ароматических производных элементов IV группы АгЭАШз (Э = 31, Ое, 8п, РЬ). [c.6]


Смотреть страницы где упоминается термин Галогенирование в ароматическом ряду: [c.353]    [c.259]    [c.820]    [c.279]    [c.259]    [c.820]    [c.75]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.2 (0) -- [ c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматическое галогенирование



© 2024 chem21.info Реклама на сайте