Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды галогенирование

    Реакции замещения. Галогенирование. В обычных условиях ароматические углеводороды практически не реагируют с галогенами как уже было указано, чистый бензол не обесцвечивает бромной воды, но в присутствии катализаторов (чаще всего применяют железо в виде очищенных стружек, опилок и т. п.) хлор и бром энергично вступают в реакцию с бензолом при комнатной температуре. При этом атомы галогена замещают атомы водорода бензольного ядра с образованием галогенпроизводных и галогеноводорода. Например, реакция хлорирования бензола протекает [c.331]


    Галогенирование ароматических углеводородов в присутствии кислот Льюиса отличается тем, что вступающий атом галогена лишь незначительно дезактивирует ароматическое ядро к последующей электрофильной атаке. В частности, хлорирование хлорбензола в присутствии кислот Льюиса ведет к побочному образованию смеси орто- и пара-дихлорбензолов, а также 1,2,4-трихлорбензола. [c.162]

    Катализаторы. В качестве кислотных компонентов промышленных катализаторов изомеризации ароматических углеводородов Се применяют преимущественно галогенированный оксид алюминия, аморфные и кристаллические алюмосиликаты. В состав бифункциональных катализаторов дополнительно вводится Р1 (или другие металлы этой группы). В качестве промышленного катализатора используется также смесь НР + ВРд. [c.268]

    ГАЛОГЕНИРОВАНИЕ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ 775 [c.775]

    Ароматические углеводороды сравнительно легко вступают в различные реакции замещения. Наиболее характерны для них реакции галогенирования, сульфирования, нитрования, а также окисления боковых цепей, алкилирования, деалкилирования и гидрирования бензольного кольца. Прн сульфировании бензола и его гомологов концентрированной серной кислотой образуются моносульфокислоты  [c.30]

    При галогенировании ароматических углеводородов, имеющих боковые цепи, в зависимости от условий проведения реакции галоген может вступать или в ядро, или в боковую цепь  [c.66]

    Алкены < ароматические углеводороды < галогенированные соединения и сульфиды < простые эфиры < нитросоединения < сложные эфиры спирты амины < сульфоны < сульфоксиды < амиды < карбоновые кислоты. [c.282]

    Этот раздел заканчивается рассмотрением галогенирования ароматических углеводородов, фенолов, анилинов, некоторых гетероциклов и соединений с электроноакцепторными группами. [c.446]

    Алифатические углеводороды Ароматические углеводороды Галогенированные углеводороды [c.353]

    В зависимости от условий галогенирования процесс протекает по разным механизмам. Так, галогенирование ароматических углеводородов в присутствии галогенидов железа, алюминия, сурьмы, способствующих образованию галоген-катиона, протекает по электрофильному механизму замещения. На примере хлорирования схема выглядит так  [c.134]

    Производство химических продуктов из нефтяного сырья основано на большой доступности последнего и на том, что низшие углеводороды легко вступают в основные химические реакции, такие как окисление, галогенирование, нитрование, дегидрирование, присоединение, полимеризация, алкилирование и т. д. Низкомолекулярные парафины и олефины, содержащиеся в природных и нефтезаводских газах, а также простые ароматические углеводороды до настоящего времени представляли с этой точки зрения наибольший интерес, потому что только здесь индивидуальные соединения легко могут быть выделены и переработаны. Можно получить большое число соединений, и многие из них в настоящее время производятся промышленностью. [c.575]


    Галогенирование ароматических углеводородов может протекать весьма разнообразно в зависимости от их характера, условий процесса и свойств галогена. Скорость реакции, как и в предыдуш,их случаях, падает от фтора к иоду. [c.774]

    Способы получения. Наибольшее значение имеет прямое галогенирование ароматических углеводородов. [c.353]

    Еще большие чувствительность и селективность имеет детектор электронного захвата (ДЭЗ), принадлежащей к тому же классу ионизационных детекторов. Как следует из самого названия этого детектора, он работает по принципу поглощения электронов анализируемым соединением, что выдвигает определенные требования к структуре этих соединений. В ДЭЗ молекулы газа-носителя ионизуются под действием /3-излучения. Ионизация порождает тепловые электроны, которые вызывают стабильный фоновый ток, если к ячейке ДЭЗ приложена разность потенциалов. Если элюируемые из колонки соединения способны захватывать электроны, величина фонового тока понижается и на самописце появляется соответствующий сигнал. ДЭЗ, которые первоначально были использованы для высокочувствительного обнаружения галогенированных углеводородов, прекрасно зарекомендовали себя и при обнаружении производных аминов, амино- и оксикислот и других подобных соединений. Галогенированные ацилирующие агенты, преимущественно перфторированные, служат для введения электронозахватных групп в амино- и оксикислоты путем образования летучих амидов и эфиров. Чувствительность ДЭЗ зависит главным образом от структуры анализируемого соединения. Основное требование — это способность соединения принимать отрицательный заряд вследствие электронного захвата. Соответственно при помощи этого детектора можно обнаруживать галогенированные и нитроароматические соединения, многоядерные ароматические углеводороды и сопряженные карбонильные соединения. [c.55]

    Галогенирование ароматических углеводородов имеет определенное значение для производства ряда диэлектриков, ядохимикатов, мономеров, разнообразного сырья для производства красителей. Чаще всего проводится хлорирование ароматических углеводородов в присутст1вии катализаторов — галогенидов металлов. [c.32]

    Реакции электрофильного галогенирования ароматических углеводородов подчиняются всем основным закономерностям реакций электрофильного замещения. Бромирование бензола проводят при комнатной температуре в присутствии железных стружек (превращающихся в процессе реакции в бромное железо) [c.109]

    Промышленные процессы прямого галогенирования, такие как хлорирование и фторирование, являются одним из важных методов химической переработки углеводородного сырья. Галоге-нированию, например хлорированию молекулярным хлором, подвергаются как газообразные насыщенные и ненасыщенные углеводороды, так и жидкие (парафиновые, нафтеновые и ароматические) углеводороды. [c.295]

    Алкильные производные ароматических углеводородов получаются обычно при действии галогеналкилов на бензол в присутствии катализатора А1С1з. Эта реакция имеет много общего с реакциями галогенирования. Роль катализатора при этом заключается в создании положительно заряженного катиона, который электрофильно атакует бензольное кольцо  [c.297]

    Скорость галогенирования ароматических углеводородов возрастает с увеличением числа алкильных заместителей и конденсированных колец в молекуле и может быть описана кинетическим уравнением второго порядка энергия активации при образовании монохлорбензола и монохлорнафталина составляет соответственно [c.262]

    Типичным примером радикального замещения является галогенирование боковой цепи ароматических углеводородов  [c.23]

    Галогенирование ароматических углеводородов в присутствии кислот Льюиса отличается тем, что вступающий атом галогена лишь незначительно дезактивирует ароматическое ядро для последующей электрофильной атаки. В частности, при хлорировании бензола в присутствии кислот Льюиса побочно получают о- и п-дихлорбензолы, а также 1,2,4-трихлорбензол. Продукты полигалогенирования образуются в большей степени, если в качестве катализатора применяют галогениды алюминия. [c.416]

    Получение из углеводородов. При изучении химических свойств углеводородов были рассмотрены реакции, позволяющие вводить в молекулу атом галогена. В зависимости от характера углеводородов (предельные или непредельные алифатические, алициклические или ароматические) реакции галогенирования протекают по разным механизмам. [c.134]

    Исключительной особенностью политетрафторэтилена яв- ляется совершенная и1ндиффе1рентн0сть к лю бым растворителям при температура аплоть до их температур кипения. Было най- дено, что он нерастворим и е набухает ни в одном из следую- щих типов растворителей вода, спирты, простые эфиры, аль- дегиды, кетопы, алифатические угле1водороды, ароматические углеводороды, галогенированные углеводороды, фенолы, слож- ные эфиры, кислоты, амины, ацилхлориды, ангидриды кислот, нитросойдинения, пиридины [643]  [c.312]


    Выше 80 °С алифатические, циклоалифатические и ароматические углеводороды, галогенированные алифатические, цилоалифати-ческие и ароматические углеводороды, высшие алифатические эфиры и кетоны, ди-и-амиловый эфир [c.293]

    Основные процессы переработки ароматических углеводородов (нитрование, сульфирование, галогенирование, ацилирование, ал-л<илирование) предполагают замещение водородных атомов в цикле электрофильными группами атакующего реагента, напри- иер  [c.19]

    В США предложен способ удаления галогенированных полифенилов (ГП), в частности полихлорированных дифенилов (ПХД), из отработанных масел в сочетании со способом их очистки. Отработанное масло рафинируется, смешивается с Нг в количестве < 26.4 нм /м сырья (мол. отношение Нг/сырье 0.1-0.2). Нагревается до 2б0-290°С и под давлением 4.25-5.26 МПа подается в реактор сначала в зону с адсорбентом, где происходит адсорбция загрязняющих примесей, отравляющих катализатор (Kt), затем (после подогрева до 2б0-290°С) в зону, заполненную Ni-Mo-Kt, промотирующим процесс дегалогенирования ГП, после чего в зону разделения при контактировании с N2 на фракцию очищенного масла и полиядерных ароматических углеводородов (АрУ), фракцию легких углеводородов и H L В зоне рафинирования масло обрабатывается водяным паром и затем под вергается вакуумной разгонке при 250—350°С и остаточном давлении 0.1-0.25 кПа, очищаясь от примесей NOx, легких и тяжелых компонентов, сернистых соединений, воды, металлов. [c.234]

    Гидролиз трихлорметильных производных аренов. Трихлорме-тильные производные ароматических углеводородов, образующиеся при галогенировании метиларенов, дают при гидролизе монокарбоновые кислоты. Таким методом получают бензойную кислоту из бензотрихло-рида  [c.392]

    Их применяют для разделения алифатических, ароматических и нафтеновых углеводородов, галогенированных углеводородов, спиртов, фенолов, альдегидов, кетонов, перекисей, жирных и дикарбоновых кислот, аминокислот, пептидов, нуклеиновых кислот, нитросоединений, серусодержащих соединений, эфиров органических кислот, глицеридов, липидов, стероидов, аминов, НАД-гидразонов и НАД-аминокислот, алкалоидов, витаминов, терпенов, антибиотиков, пестицидов, антиокислителей, поверхностно-активных веществ, неорганических иоков. Крупнопо ристые силикагели используются также в качестве носителей катализаторов. [c.207]

    В настоящее время катализ с участием кислот и основавта широко используется в многотоннажвом промышленном органическом синтезе и нефтехимии. Это, в первую очередь, относится л процессам алкилирования изопарафиновых и ароматических углеводородов олефинами, полимеризации (олигомеризации) непредельных соединений, галогенирования, сульфатирования, сульфирования и нитрования, конденсации по карбонильной группе, этерификации, гидратации и дегидратации. [c.384]

    В качестве кислотных катализаторов изомеризации ароматических углеводородов в промышленности применяют щ)еимуще-ственно галогенированный у-оксид алюминия, аморфные и кристаллические алюмосиликаты. В состав бифункциональных катализаторов дополнительно вводят платину или другие металлы этой труппы. [c.787]

    Алкилирование аренов по Фриделю-Крафтсу как синтетический метод имеет три серьезных недостатка, ограничивающих его применение в органическом синтезе. Один из них заключается в том, что первоначально образующийся продукт алкилирования более реакционноспособен, чем исходный арен. Поэтому алкилирование аренов алкилгалогенидами при соотношении реагентов, близком к эквимольному, приводит к образованию значительного количества продуктов полиалкилирования. В этом отношении алкилирование сильно отличается от нитрования и галогенирования. Для того чтобы свести полиалкилирование к минимуму, используют большой избыток ароматического углеводорода. В этом случае он выполняет роль и реагента и растворителя. [c.471]

    Галогенирование ароматических углеводородов. Галогениро вание ароматических углеводородов осуществляют, как правило непосредственно действием галогенов — хлора, брома, иода и реже фтора. Однако для этой цели могут быть использованы также некоторые галогенсодержащие соединения — галогенсодержащие карбоновые кислоты, галогепангидриды кислот, галогенпро-изводные фосфора. [c.262]

    Впервые окисление бензола в фенол осуществлено Фриделем в 1888 г. путем продувания воздуха через кипящий углеводород, смешанный с галогенидом алюминия. Выходы фенола были ничтожны. Фридель полагал, что хлористый алюминий, расшатывающий С — Н-связь ядра при реакциях алкилирования или галогенирования ароматических углеводородов, помогает и в данном случае ходу реакции, т. е. дает возможность легкого внедрения кислорода между ядром и водородом. Но это оправдалось лишь частично. Очевидно, между реакцией замены водородного атома ядра и реакцией внедрения кислорода между ядром и водородом есть существенная разница. Последующие попытки жидкофаз-иого окисления бензола в фенол с тех по р и в сущности до настоящего времени не привели к желаемым результатам. Эмануэль и Денисов [263] указывают на принципиальную возможность жидкофазного окисления бензола в фенол, но прежде чем осуществить эту задачу, необходимо найти пути для устранения обнаруженного ими самоторможения реакции, которое заключается в накоплении продуктов, ингибирующих процесс в результате замены активных радикалов на малоактивные. Применение давления, а также стремление стабилизировать фенол в процессе реакции добавлением щелочей тоже пока не дали должного эффекта [264]. [c.354]

    Галогенарены получают прямым галогенированием ароматических углеводородов и их производных. Эти реакции протекают по схеме электрофильного ароматического замещения (см. разд. 9.2.1). Некоторые галогенарены производят в промышленности в значительных количествах. [c.638]

    Галогенироваиие (заместительное)—замещение водорода на галоген, обычно хлор или бром (обозначение типа реакции Вя, см. 28.6). Фтор реагирует с большинством органических веществ со взрывом, поэтому для получения фторпроизводных используют не прямое фторирование, а косвенные способы. С иодом прямое замещение не протекает из-за энергетических затруднений. Для галогенирования алифатических углеводородов необходимо активирование процесса мощным источником света, а для галогенирования ароматических углеводородов — ускорение с использованием катализаторов. [c.443]

    Галогеннрование (присоединительное) — присоединение галогенов СЬ, Bri или I2 (обозначение Лд). Для проведения присоединительного галогенирова-. ния алифатических углеводородов необходимо каталитическое действие еле-дов влаги или галогеиоводородов, а при галогенировании ароматических углеводородов — воздействие мощного источника света (необходимость в катализаторе отсутствует). [c.445]


Смотреть страницы где упоминается термин Ароматические углеводороды галогенирование: [c.85]    [c.186]    [c.190]    [c.103]    [c.103]    [c.19]    [c.20]   
Органическая химия (1956) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ продуктов галогенирования углеводородов жирного и ароматического рядов

Арены ароматические углеводороды галогенирование

Ароматические углеводороды галогенирование боковой цепи

Ароматические углеводороды галогенирование в ядро

Ароматическое галогенирование

Галогенирование ароматических углеводородов в боковую цепь

Галогенирование ароматических углеводородов и их производных

Катализаторы галогенирования ароматических углеводородов

Химические свойства ароматических углеводородов Реакции присоединения. Гидрирование, галогенирование. Восстановление по Бергу. Реакции окисления. Озонирование



© 2025 chem21.info Реклама на сайте