Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Арилы реакционная способность

    Последняя реакция — взаимодействие пероксидного радикала с углеводородом — определяет строение образующегося гидропероксида и последующих продуктов окисления. При этом соблюдается Обычный для радикальных реакций порядок изменения реакционной способности атомов водорода, определяемый относительной стабильностью промежуточного радикала R-. Вследствие этого преимущественным местом атаки молекулы при окислении арил-алканов становится а-положение боковой цепи по отношению к ароматическому ядру, а для олефинов—аллильное положение. Кроме того, для углеводородов всех классов справедлива известная последовательность в изменении способности к замещению атомов водорода, находящихся при разных углеродных атомах (третичный >вторичный>первичный). [c.358]


    Арены нефти изучены лучше, чем углеводороды других классов. Многие индивидуальные арены были выделены из нефтяных фракций при помощи методов, основанных на их повышенной реакционной способности, избирательной адсорбции или растворимости в полярных растворителях, высоких температурах плавления, [c.147]

    Винилгалогениды обнаруживают сходство в свойствах с арилгалогенидами они тоже не реакционноспособны по отношению к нуклеофильному замещению и также оказывают аномальное влияние на реакционную способность и ориентацию в электрофильных реакциях групп, с которыми связан атом галогена, в данном случае в реакциях присоединения к двойной углерод-углеродной связи. Будет показано, что это сходство между арил- и винилгалогенидами объясняется сходством в их структуре. [c.782]

    Низкая реакционная способность арил- и винилгалогенидов [c.786]

    Низкая реакционная способность арил- и винилгалогенидов по отношению к реакциям замещения, аналогично устойчивости алкенов и диенов (разд. 10.16—10.18), обусловлена двумя различными факторами, а именно а) делокализацией электронов вследствие резонанса и б) различием в энергиях о-связей, связанным с различием в гибридизации углерода. [c.787]

    Атака на боковую цепь проходит предпочтительно по С—Н-свя-аи в а-положении к арильному остатку. Атомы брома и хлора отрывают водород от толуола более быстро, чем от этана. Однако отрыв хлором водорода от вторичного углерода проходит быстрее в пропане, чем в этилбензоле или дифенилметане. Атомы брома всегда отнимают бензильный водород более быстро, чем аналогичный водород в алкане [97]. Ниже приведены некоторые примеры влияния структуры на реакционную способность алкильных и арил-алкильных водородных атомов по отношению к атомам брома и хлора  [c.389]

    Превращения углеводородов, содержащих 9—18 атомов углерода в цикле, впервые исследовал Прелог с сотр. [196], над Рё Катализатором при 400 °С. Реакционная способность указанных циклоалканов зависела главным образом от размера цикла при этом образовывались различные арены, в том числе полициклические и небензоидные ароматические соединения — инден, азу-лен, нафталин, фенантрен, трифенилен и др. Учитывая число углеродных атомов в исходном цикле и основываясь на характере каталитических превращений последнего, авторы [196] разделили исследованные углеводороды на четыре группы I (С5+47,) — 9H18, 13H26, С17Н34  [c.152]

    Путь в. Может произойти 1,2-миграция электрофильной группы (в данном случае N02+) с последующей потерей протона. Продукт в этом случае идентичен продукту прямой атаки ЫОа+ на орго-положение РН2. Иногда трудно определить, какая доля орго-продукта в каждом индивидуальном случае образуется по этому пути [63], хотя имеются указания на то, что эта доля значительна. С учетом этой возможности многие имеющиеся в литературе выводы об относительной реакционной способности орто-, мета- и ара-положений оказываются под сомнением, так как частично продукт может образоваться не в результате прямой атаки на орто-положение, а вследствие атаки на илсо-положение с последующей перегруппировкой [54]. [c.321]


    Различают изохорно-изотермическнй потенциал АР (изменение свободной энергии системы при постоянном объеме и иостояиной температуре) и изобарно-изотерми-ческий потенциал АО (изменение свободной энергии системы при постоянном давлении и постоянной температуре). Являясь частью внутренней энергии системы, способной превращаться в полезную работу, АР или АО данного химического процесса служат мерой химического сродства реагирующих веществ, т. е. мерой их реакционной способности. Чем больще абсолютные величины АР или АО реагирующей системы, тем полнее вступают в реакцию данные вещества, тем больше значение работы данного химического процесса. Наоборот, вещества, реагирующие между собой недостаточно энергично, претерпевают небольшое изменение свободной энергии. [c.107]

    Отсюда вытекает новая задача необходимо з ать состояние ионов металлов и реагента в условиях их взаимодействия, которое в значительной мере влияет ita реакционную способность этой п ары. Выясиентте состояния взаимодействующих компонентов ггроли- [c.298]

    В последнее время возрастает значение восстановления алифатических I соединении до аминов. Однако ввиду большей реакционной способности алифатя1 нитрогрупп выбор условий реакции более ограничен, чем при восстановлении аро ческих иитросоединений. в щелочной среде могут протекать реакции лонденсаЦ а в кислой среде возможно гидролитическое отщепление первичных иитрогрупп. [c.524]

    Краски, модифицированные маслами. Использование фенольных олигомеров, модифицированных маслами, приобретает все большее значение для антикоррозионных грунтовок, применяемых при окраске кораблей и лодок. Аналогичные многослойные покрытия применяют и при окраске других транспортных средств. Например, лакокрасочные покрытия для железнодоронагых вагонов могут состоять из грунтовки на основе эпоксидной смолы, промежуточного слоя из фенольной смолы (модифицированной смесью уретанового масла и алкидной смолы) и верхнего слоя на основе смеси уретанового масла и алкидной смолы [34]. Алкил- и арил-фенольные смолы можно смешивать с высыхающими маслами [2]. Из растительных масел предпочитают использовать тунговое, иногда льняное или касторовое. Содержание фенольной смолы в композиции (в зависимости от реакционной способности) составляет от 25 (резолы) до 100% (новолаки). Реакцию с маслами новолачной смолы, состоящей из -грег-бутилфенола, /г-октилфенола или я-фенилфеиола проводят в условиях, позволяющих предотвратить гелеобразование. Для этого половину смолы растворяют в масле и в течение 60 мин нагревают до 190°С, далее добавляют остальную смолу и всю массу нагревают прн 230—240°С до прекращения газовыделения (пенообразования), а затем еще 30 мин для окончательного завершения реакции. После охлаждения модифицированную смолу разбавляют уайт-спиритом и ароматическими растворителями. Для ускорения сушки на воздухе в состав композиции вводят кобальтовые или свинцовые сиккативы и добавки, обеспечивающие получе1те гладких покрытий. Такие покрытия ие дают отлипа при температуре окружающей среды в течение 6—16ч (в зависимости от содержания тунгового масла). [c.204]

    Активированные двойные сия и в цикле очень реакционноспособны. Выходы 3-арилкумаринов [1]. значительно более пысо-кис го сравнению с выходами продуктов реакции из бензаль-ацетона [43] и метилового эфира коричной кислоты [1, 26]. Имид малеиновой кислоты и К-замещенные имиды малеиновой кислоты [33, 34] обычно дают удовлетворительные выходы арили-роваиных продуктов, тогда как амиды вообще не реакционно способны [5, 112]. Хиионы достаточно реакционноспособны и подвергаются арилированию и отсутствие медного катализатора. Возможность арилироват), двойную связь, активированную [c.213]

    Существует несколько нитрующих систем. Главным фактором пр1 выборе реагента является реакционная способность арена. Нитрующиь агентом может быть концентрированная азотная кислота, но она мене< реакционноспособна, чем ее смеси с серной кислотой. В обоих случая активной нитрующей частицей является ион иитрония. Существовани этой частицы подтверждено многими физическими методами, с помощьк которых в определенных условиях можно также определить ее концен трацию. При растворении азотной кислоты в концентрированной серно кислоте образуются 4 нона (на одну молекулу азотной кислоты), чт) показывают измерения понижения температуры замерзания [1]  [c.228]

    Присоединение нуклеофила к ароматическому кольцу с последующим отщеплением заместителя приводит к нуклеофильному замещению. Основным энергетическим требованием этого механизма является образование промежуточного продукта присоединения. Стадия присоединения облегчается электропоакаепторными заместителями, поэтому нитро-аром этические соединения являются лучшими субстратами для нуклеофильного ароматического замещения. Другие электроноакцепторные заместители, такие как Ц41ано-, ацетил- и трифторметильная группы, также повышают реакционную способность, но в меньшей степени, чем нитрогруппа. В определенных условиях промежуточные аддукты достаточно устойчивы, их часто называют комплексами Мейзенгеймера [65]  [c.245]


    Высокая региоселективность взаимодействия ортоэфиров с 1-этил-З-алкил(арил)замещенными алюминациклопентанами, как и уменьшение реакционной способности ортоформиатов при переходе от соединения 1 к высшему гомологу 2, вероятно, связаны со стерическими затруднениями, возникающими в переходном состоянии. Если принять, что реакция проходит через четырехчленные интермедиаты а и б, то по стерическим факторам более [c.17]

    Показано, что наблюдается следующая закономерность изменения реакционной способности семикарбазидов в реакциях хлорацетилирования 1-арилсемикарбазиды < 4-алкилсемикарбазиды < семикарбазид < 4-арил-семикарбазид. [c.22]

    Реакционная способность метиленовой группы пиррол-2-онов изучена также на примере взаимодействия 5-(3,4-дихлорфенил)-ЗН-пиррол-2-она с ацетофеноном, флуореноном, изатином. Реакция проводилась при длительном (10 часов) нагревании реагентов в растворе ксилола или уксусного ангидрида, с образованием 5-арил-3-арилиден-ЗН-пиррол-2-оны [184]. [c.21]

    В только что приведенном примере каждый из компонентов можно варьировать. Алкилгалогенид может содержать более сложную алкильную группу, а атом галогена не обязательно должен быть хлором в некоторых случаях используются спирты или, особенно в промышленности, алкены. Можно применять замещенные алкилгалогениды, как, например, хлористый бензил eHs Hj l. Ар ил галоген иды (Аг — X, например хлор- или бромбензол) нельзя использовать вместо алкилгалогенидов из-за низкой реакционной способности галогена, связанного с ароматическим кольцом (разд. 26.7). [c.363]

    Алкил (арил) гидридсиланы — соединения общей формулы КиНз 81 (где Е — органический радикал и = 1-гЗ), — благодаря содержанию 81-Н-связей обладают высокой реакционной способностью, которая зависит от числа и строения алкильных или арильных радикалов у атома кремния. Алкил (арил) гидридсиланы реагируют с водой, спиртами, кислотами, кетонами, альдегидами, аминами, гидроксидами, хлоридами металлов и т. д. [c.31]

    Пиридины с гидроксильными заместителями в а- и у-положениях существуют в виде таутомеров с карбонильной гругшой — пиридонов. Тем не менее, наблюдается некоторое сходство реакционной способности пиридонов и фенолов. Так, пиридоны активированы к реакциям электрофильного замещения, причем замещение протекает по орто- и ара-положениям относительно кислородного заместителя. Пиридоны при потере атома водорода группы ЫН легко образуют анионы, которые по своей структуре и реакционной способности аналогичны фенолятам в зависимости от условий возможны реакции таких анионов как по атому кислорода, так и по атому азота. [c.98]

    В первой стадии замещения по механизму присоединения -отщепления 5дАг, которая в больщинстве случаев определяет скорость реакции (см. предыдущий раздел), происходит взаимодействие несвязывающей орбитали нуклеофила с НСМО арена. Бели встать на точку зрения, что реакционная способность аренов, по крайней мере частично, определяется его молекулярными свойствами в статическом нереагирующем состоянии, то можно полагать, что скорость и ориентация замещения должны зависеть от формы НСМО арена. В главе 13 мы показали, что такой подход оказывается эффективным при объяснении электрофильного ароматического замещения, а теперь применим его к нуклеофильному замещению Аг, медленной стадией которого является атака нуклеофила на п-систему арена. [c.610]


Смотреть страницы где упоминается термин Арилы реакционная способность: [c.98]    [c.142]    [c.217]    [c.226]    [c.485]    [c.233]    [c.1065]    [c.1068]    [c.1188]    [c.209]    [c.266]    [c.154]    [c.662]    [c.22]    [c.241]    [c.335]    [c.357]    [c.360]    [c.168]    [c.139]    [c.99]    [c.226]    [c.375]    [c.65]    [c.587]    [c.441]   
Химия органических соединений бора (1965) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Арены

Арены реакционная способность



© 2025 chem21.info Реклама на сайте