Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкены устойчивость

    Реакционная способность алкенов зависит от устойчивости образующихся карбокатионов и увеличивается в ряду  [c.385]

    В более общей формулировке это правило звучит так при присоединении протона к алкену образуется наиболее устойчивый карбокатион. Устойчивость карбокатионов зависит от многих факторов. В общем случае устойчивость уменьшается в ряду третич-ный>вторичный>первичный. Это объясняется тем, что алкильные заместители являются донорами электронной плотности, подавая ее на положительно заряженный атом углерода, приобретая тем самым небольшой собственный положительный заряд. В результате получается, что заряд распределяется (делокализуется) по всему иону. Размазывание заряда уменьшает энергию карбокатиона, повышая его стабильность. [c.215]


    Строение, природа двойной связи и изомерия алкенов., Методы получения. Механизм дегидратации спиртов, строение и устойчивость карбокатионов. Индуктивный эффект. [c.194]

    Механизм таких реакций, называемых реакциями оти епления (элиминирования), рассмотрен подробно на с. 96. Чем устойчивее образующийся алкен, тем легче он получается в реакции дегидро-галогенирования. По устойчивости алкены можно расположить в такой ряд  [c.66]

    Для выяснения конкурентных отношений между этими реакциями недостаточно знания скоростей прямых реакций, необходимо также знать положение равновесия в этих реакциях. Располагая величинами констант равновесия реакций соединения радикалов с молекулами алкенов, реакций замещения радикалов с молекулами алканов и алкенов, а также реакций диссоциации молекул на радикалы (мономолекулярным или бимолекулярным путем), можно выяснить, являются ли равновесия при некоторых из этих реакций в условиях крекинга причиной замедления реакций распада алканов, описанного в предыдущей главе. Так, например, реакции присоединения атомов Н к молекулам пропилена или изобутилена могут вызывать торможение цепного распада вследствие меньшей активности вторичных пропильных и третичных изобутильных радикалов в том лишь случае, когда эти радикалы обладают устойчивостью в условиях крекинга алканов, т. е. при значительном размере обратимой реакции образования их. Точно так же и реакции замещения Н и СНз-радикалов с молекулами алкенов, несмотря на возникновение в результате этих реакций менее активных радикалов, не смогут явиться серьезной помехой для развития цепей крекинга, если равновесия в этих реакциях в условиях крекинга сильно смещены в сторону исходных продуктов. [c.246]

    ТЕПЛОТЫ ГИДРИРОВАНИЯ. Более удобным способом определения относительной устойчивости алкенов является измерение теплоты гидрирования (т. е. количества тепла, выделяющегося при гидрировании 1 моля алкена до соответствующего алкана). Этот способ имеет преимущества [c.300]

    Бензол обладает поразительно низкой реакционной способностью по сравнению с алкенами, например бутеном. Своей низкой реакционной способностью бензол больше напоминает насыщенные алканы. Он не вступает в реакции присоединения по двойной связи если бы такие реакции протекали, это понижало бы степень делокализации электронов. Наличие делокализации приводит к тому, что устойчивость бензола оказывается на 166 кДж моль больше, чем следует ожидать для соединения с тремя простыми и тремя двойными связями (см. рис. 15-9). Вообще говоря, чем больше область молекулы, на которую простирается делокализация электронов, тем устойчивее такая молекула. [c.301]


    ОТНОСИТЕЛЬНАЯ УСТОЙЧИВОСТЬ ИЗОМЕРНЫХ АЛКЕНОВ [c.299]

    Термодинамическую устойчивость образующихся в результате реакции алкенов можно охарактеризовать теплотами их гидрирования  [c.67]

    При отщеплении образуется преимущественно наиболее устойчивый в термодинамическом отношении (наиболее замещенный) алкен (правило Зайцева). [c.77]

    Поскольку в такой реакции двойная связь всегда мигрирует к концу цепи, из олефинов с внутренней двойной связью можно получить олефины с концевой связью, так что сдвиг двойной связи часто противоположен тому, какой наблюдается при использовании других методов. В то же время перегруппированный боран можно превратить непосредственно в олефин нагреванием с алкеном, молекулярная масса которого выше, чем у продукта (т. 4, реакция 17-16). Фотохимическая изомеризация также может привести к термодинамически менее устойчивому изомеру [63]. [c.426]

    Для того чтобы определить относительную устойчивость алкенов по их теплотам гидрирования, нет необходимости знать механизм этого гидрирования. Единственное необходимое условие — чтобы оба алкена гидрировались до одного и того же алкана. В равных условиях разность теплот гидрирования двух алкенов и представляет собой разницу в энергетическом состоянии этих алкенов (рис. 8-2). [c.300]

    Длкены характеризуются ввиду наличия двойной связи высо — кой реакционной способностью в реакциях присоединения, но повышенной, по сравнению с алканами, термостойкостью в отношении реакций распада. Этилен из алкенов наиболее устойчивый. Он всегда содержится в продуктах термолиза нефтяного сырья как первичный и вторичный продукт их превращений. По термической стабильности он занимает промежуточное положение между мета — ном и этаном. Термический распад этилена заметно начинается при температуре 660 С. При 400 — 600 °С в основном протекает его полимеризация [c.32]

    В этой главе мы прошли долгий путь рассуждений, начав с рассмотрения сравнительной химии элементов В, С, N и Si. Углерод несомненно играет особую роль, обусловленную наличием у его атомов одинакового числа валентных электронов и орбиталей, отсутствием отталкивающих неподеленных электронных пар и способностью образовывать двойные и тройные связи. Простые алканы, или соединения углерода и водорода, с простыми связями иллюстрируют многообразие соединений, которые может образовывать углерод благодаря своей способности создавать длинные устойчивые цепи. Алкилгалогениды - это своеобразный мостик от алканов с их сравнительно низкой реакционной способностью к изобилию производных углеродов спиртам, простым эфирам, альдегидам, кетоиам, сложным эфирам, кислотам, аминам, аминокислотам и соединениям других типов, которые не обсуждались в данной главе. Способность углерода образовывать двойные и тройные связи была проиллюстрирована на примере алкенов и алкинов, она играет чрезвычайно важную роль при образовании сопряженных и ароматических молекул. [c.337]

    Энергетический выигрыш при образовании ароматическо системы обусловливает повышенную устойчивость бензола по сравнению с алкенами и сопряженными нециклическими полие-нами к реакции присоединения по кратным связям, поскольку при этом должна нарушиться ароматическая система. [c.323]

    С увеличением молекулярной массы алкенов возрастает тен — денция к разрыву С — С — связи. Для высокомолекулярных алкенов наличие двойной связи практически не влияет на термостойкость алкенов, и по устойчивости они становятся близкими алканам с тем же у] леродным атомом. [c.33]

    Селективное получение индивидуальных разветвленных а-олефинов может быть достигнуто при димеризации и содимеризации низкомолекулярных алкенов в присутствии щелочнометаллических катализаторов на носителях. В отличие от алюмоорганических систем эти катализаторы позволяют вовлечь в реакцию более устойчивые термодинамически р-олефины (2-алкены), которые преобладают в продуктах нефтепереработки. [c.323]

    Затем процесс развивается по ДЕум возможным направлениям. Крупные, относительно неустойчивые радикалы (Сз и выше ) самопроизвольно распадаются по р-иравилу с образованием более устойчивых метильных г этильных радикалов или атомов водорода и соответствующих молекул алкенов  [c.228]

    Адамантан обладает устойчивой структурой с минимально напряженными связями. Его термическая деструкция начинается при 660 °С и завершается на 94 % при 675 °С образованием алкенов и аренов [67]. В присутствии алюмосиликатного нли алюмохромо-вого катализатора адамантан превращается в продукты разложения при 550—570°С. В среде водорода в контакте с катализаторами на кизельгуре происходит гидрогеиолиз адамантана на никелевом катализаторе при 300—500 °С, на иридиевом или платиновом при 500—550 °С образуются газообразные вещества, бензол, нафталин и др. [c.216]

    При элиминировании преимущестненно образуются более термодинамически устойчивые алкены с большим числом алкильных ipymi при атомах углерода, связанных кратной связью (правило Зайцева), Большая термодинамическая устойчивость именно таких алкенов видна при сравнении (на примере ненте-нов) теилот гидрирования (в кДж/моль)  [c.108]


    Однако между ароматическими соединениями и алкенами существуют принципиальные различия. Во-первых, ароматические соединения проявляют склонность к замещению атомов водорода на электрофильную группу, а алкены — к присоединению реагентов по кратной связи. Во-вторых, алкены реагируют с большим числом окислителей (КМПО4, 0з04, Н2О2, органические пероксикислоты и др.), которые в ароматических соединениях могут окислять только боковые цепи, оставляя неизменным изоциклическое кольцо. (Пятичленные ароматические гетероциклы значительно менее устойчивы к действию окислителя по сравнению иензолом, а щестичленные — наоборот.) [c.313]

    Подробно изучены устойчивые я-комплексы (34) бенз1)ла и его гомологов с тетрацианоэтиленом. Несмотря на наличие двойной углерод-углеродной связи, тетрацианоэтилен — электроноакцепторный агент, в котором я-электронная плотность почти полностью рассредоточена на атомах азота нитрильных групп. Аналогичным электроноакцепторным агентом является и тетрафторэтилен, который также вследствие дефицита электронной плотности на атомах углерода может образовывать я-комплексы с алкенами и ароматическими соединениями. [c.318]

    Большой и важный класс углеводородов образуют ароматические соединения. Простейшим представителем этого класса является бензол (см. рис. 24.1), имеющий молекулярную формулу СвН . Как мы уже отмечали, бензол имеет плоскую, высокосимметричную молекулу. Молекулярная формула бензола показывает, что это соединение должно иметь высокую степень ненасыщенности. Поэтому можно было бы ожидать, что бензол обладает высокой реакционной способностью, подобно ненасыщенным алифатическим углеводородам. Однако в действительности химические свойства бензо.та совершенно непохожи на свойства алкенов или алкинов. Большая устойчивость бензола и других ароматических углеводородов по сравнению с алкенами и алкинами обусловлена стабилизацией я-электронов вследствие делокализации я-ор-биталей (см. разд. 8.4, ч. 1). [c.417]

    В широком смысле для реакций заряженша или полярных частиц правило имеет вид "При гетеролитическом присоединении полярных молекул к алкенам или алкинам более электроотрицательный атом (шш часть) полярной молекулы присоединяется к тому атому углерода, который несет наименьшее чиоло атомов водорода". Таким образом утверждается, что основное направление реакпри должно протекать через наиболее устойчивый карбениевый ион. [c.58]

    С другой стороны, в наиболее устойчивой конформации неоментилхлори-да атом хлора занимает аксиальное положение. Из-за наличия двух аксиальных водородов (Нд и Н ,), один из которых связан с атомом углерода, несущим изопропильную группу, неоментилхлорид в условиях реакции Е2 дает как 3-ментен (75%), так и 2-ментен (25%). Это соотношение продуктов свидетельствует о том, что предпочтительным оказывается наиболее замещенный (следовательно, наиболее стабильный) алкен и что элиминирование подчиняется правилу Зайцева. [c.285]

    Устойчивость алкенов возрастает по мере увеличения степени алкилирова-ния прп двойной связи (разд. 6.3)  [c.299]

    ТЕПЛОТЫ СГОРАНИЯ. Поскольку цис- и тра с-2-бутены являются диастереомерами, они должны отличаться по своим химическим и физическим свойствам, а также по энергии основного состояния. Одним из способов определення их относительной устойчивости является окисление их до СОд и НаО более устойчивый алкен должен иметь при этом меньшую теплоту сгорания (рис. 8-4). Теплота сгорания г ис-2-бутена составляет647,81 ккал/моль, [c.299]

    Взаимодействие катиона с алкеном, а следовательно, и рост цепы продолжаются до тех пор, пока катион остается достаточно устойчивым, а в реакционной смеси еще достаточно алкена. Эта цепь в конце концов молчвт оборваться из-за какого-то процесса, который разрушит катионный центр, например если путем потери протона вновь образуется алкен. [c.328]

    Одпако, если прод1ежуточный карбанион окажется относительно устойчивым, становится возможным присоединение основания к соответствующему алкепу и дальнейшее взаимодействие образовавшегося карбаниона с алкеном. Классическим примером является образование полиакрилонитри-ла при взаимодействии акрилонитрила с основанием  [c.329]


Смотреть страницы где упоминается термин Алкены устойчивость: [c.70]    [c.233]    [c.200]    [c.87]    [c.217]    [c.218]    [c.145]    [c.243]    [c.120]    [c.54]    [c.79]    [c.432]    [c.445]    [c.512]    [c.539]    [c.391]    [c.391]    [c.810]    [c.845]    [c.1792]    [c.299]    [c.301]   
Органическая химия (1974) -- [ c.157 , c.178 , c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Алкены



© 2024 chem21.info Реклама на сайте