Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотная кислота строение молекул

    Общая характеристика элементов главной подгруппы V группы периодической системы. Азот. Строение атома, строение молекулы, степени окисления. Круговорот азота в природе. Получение, физические и химические свойства азота. Аммиак, строение молекулы, получение, физические и химические свойства. Восстановительные свойства аммиака. Аммиачная вода. Соли аммония, их получение. Термическое разложение солей аммония. Оксиды азота, их получение и основные химические свойства. Азотистая кислота. Окислительно-восстановительные свойства соединений азота со степенью окисления +3. Азотная кислота, ее получение и химические свойства. Окислительные свойства азотной кислоты в реакциях взаимодействия с металлами и неметаллами. Царская водка. Соли азотной кислоты, их термическое разложение. Азотные удобрения. Фосфор, строение атома, степени окисления. Аллотропия. Физические и химические свойства. Фосфин. Фосфиды, их гидролиз. Оксиды фосфора (III) и (V), их получение, свойства. Ортофосфор-ная кислота, ее получение. Одно-, двух- и трехзамещен-ные фосфаты. Их растворимость и гидролиз. Метафос-форная кислота, ее общая характеристика. Фосфорные удобрения. [c.7]


    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, иауки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением 50г воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотоннажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рассмотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]

Рис. IX-11. Строение Все часто встречающиеся в практике ме-молекулы HNO3. таллы, за исключением Аи и Pt, переводятся крепкой азотной кислотой в оксиды. Если последние растворимы в HNO3, то образуются нитраты. По этой схеме азотная кислота растворяет и такие стоящие в ряду напряжений правее водорода металлы, как Си, Hg и Ag. Рис. IX-11. Строение Все часто встречающиеся в практике ме-молекулы HNO3. таллы, за исключением Аи и Pt, переводятся <a href="/info/739314">крепкой азотной кислотой</a> в оксиды. Если последние растворимы в HNO3, то образуются нитраты. По этой <a href="/info/125862">схеме азотная кислота</a> растворяет и такие стоящие в <a href="/info/861410">ряду напряжений</a> <a href="/info/581807">правее водорода</a> металлы, как Си, Hg и Ag.

    Химические свойства. Азотная кислота относится к числу наиболее сильных кислот. В водных растворах она полностью диссоциирует на ионы Н и N0 . Проявляет все свойства кислот. Молекула НМОз имеет плоское строение. Валентность азота в НЫОз равна четырем  [c.205]

    В молекуле азотной кислоты атомы кислорода, связанные только с азотом, равноценны, поэтому и возможность перехода электронов к каждому из них одинакова. Поэтому более точно строение НЫОз выражает следующая структурная формула  [c.78]

    Молекула азотной кислоты полярна (р. = 2,16). По данным микроволновой спектроскопии (П1 6 доп. 9) она является плоской и имеет строение, показанное на рис. IX-26. Энергия" связи О—N между гидроксилом и нитрогруппой равна 52 ккал моль. Ион NOJ (в кристаллах NaNOa) представляет собой плоский равносторонний треугольник с asoTONf в центре [ (N0) = 1,22 А]. Силовая константа связи k(NO) = 10,4, а сродство к электрону радикала NO3 оценивается в 90 ккал/моль. [c.428]

    Как показано на рис. 3.5, графит имеет слоистое строение, кристаллическая структура образует две разновидности гексагональную и ромбическую, В первой положение чередующихся слоев и атомов углерода по вертикали повторяется череа один слой, а во второй — череа два слоя. Гексагональная кристаллическая структура является стабильной формой. При пропускании электрического тока графит обнаруживает поразительную анизотропию удельное сопротивление вдоль слоев составляет от 4-Ю" до 7-10 Ом-см, а в направлении, перпендикулярном слоям,— от 1-10 до 5-10- Ом-см. Как считают, это объясняется тем, что атомы углерода образуют между собой зр -гибридизованные а-связи, а в направлении, перпендикулярном слоям, электроны (л-электроны) свободно перемещаются вдоль поверхности слоя. Химически графит более реакционноспособен, чем алмаз, при высокой температуре он соединяется с кислородом, медленно превращаясь в диоксид углерода. Графит окисляется также такими сильными окислителями, как азотная кислота и др. образующийся так называемый окисленный графит представляет собой химическое соединение сложной структуры, содержащее кислород и водород. Кроме того, графит способен включать в промежутки между слоями атомы, молекулы и ионы, давая соединения, многие из которых проявляют замечательные свойства (гл. 5, разд. 2). [c.102]

    Азотная кислота — одна из сильных кислот. Молекула HNOз и нитрат ион имеют строение, представленное схемами [c.407]

    Сопоставляя данные, полученные из спектров комбинационного рассеяния и инфракрасных спектров поглощения, можно получить представление о структуре молекул, так как для многих связей в молекулах в спектрах комбинационного рассеяния имеются свои характерные частоты. Например, в разбавленном растворе ННОд наблюдается то же волновое число 1050 см , что и в растворах азотнокислых солей, характерное для иона N0 . В концентрированных растворах НЫОз его заменяет волновое число 1310 см.- , характерное для соединений типа КО—ЫОа- Это указывает на то, что в концентрированной азотной кислоте происходит перегруппировка молекул ННОз в псевдокислоту строения НО—N 2. [c.74]

    Строение фруктозы VI было доказано аналогичным образом. Так же как и глюкоза, фруктоза дает пентаацетат, а при восстановлении из нее образуется смесь двух шестиатомных спиртов. Один из этих спиртов является сорбитом, что указывает на наличие у фруктозы пяти гидроксильных групп, карбонильной группы и прямой углеродной цепи, а также подтверждает близкое родство глюкозы и фруктозы. В отличие от глюкозы, фруктоза не окисляется бромом, а при окислении азотной кислотой в результате разрыва углеродной цепи образуется смесь гликолевой и винной кислот. Кроме того, фруктоза обладает весьма слабо выраженными восстановительными свойствами. Это означает, что в молекуле, фруктозы имеется не альдегидная, а кетонная группа. Положение кето- [c.16]

    Л( гко действует на ароматические углеводороды нитрующая смесь из азотной и серной кислот, причем получаются мононитропроизводные, а при избытке смеси, или при повышении концентрации взятых кислот, образуются ди-и тринитропроизводные. Так как строение молекулы влияет на легкость нитрования, обработка смеси гомологов бензола дает и моно- и динитропроизводные, вследствие чего аналитическое значение метода нитрования невелико. [c.109]

    Установление структуры индиго было начато около 1830 г. Его окисление азотной кислотой приводит к изатину. Только в 1883 г. Байеру удалось решить эту проблему с помощью метода синтеза, доказывавшего строение. В его формуле индиго приписывалась 2-конфигурация. Позднее методами рентгеноструктурного анализа было показано, что молекула обладает -конфигурацией, которую стабилизуют две внутримолекулярные водородные связи. [c.755]

    Азотная кислота — одна из сильных кислот, уступающая только хлорной кислоте H IO4, Молекула HNO3 и нитрат-ион имеют строение, представленное схемами  [c.262]

    Наиболее отчетливо ослабление взаимного влияния центральных и концевых атомов С в длинных углеродных цепях показано Наметкиным с сотрудниками [381 на примере реакции нитрования парафинов нормального строения по М. И. Коновалову. w-Октадекан, подобно своим низшим гомологам, при нитровании разбавленной азотной кислотой (уд. веса 1,075), при нагревании в запаянных трубках дает -мононитропроизводное Hj— H(N02)—( H2)i5—GH , т. e. нитрогруппа присоединяется ко второму углеродному атому в цепи. При нитровании в тех же условиях к-гексатриаконтана в качестве главного продукта реакции получался , -динитро-w-гексатриконтан, СН3— H(N02)—(СН2)з2—СН(НОг)СНз, а не -мононитрогексатриаконтан, как можно было ожидать по аналогии с реакцией н-октадекана. Следовательно, в этом случае при наличии длинной углеродной цепи к-гексатриаконтана, состоящей из 36 атомов углерода, атомы 2 и 35 ( — ) вели себя в реакции нитрования так, как будто они находились в двух молекулах н-окта-декана. [c.48]


    К действию а 3 от и о й к и с л о т ы предельные углеводороды относятся Пй-разному. Если углеводород имеет в молекуле третичный атом углерода (который вообще легче подвержен химическим воздействиям), то такой углеводород можно окислить концентрированной азотной кислотой до двуокиси углерода и низших жирных кислот (Марковников, Пони). Углеводороды нормального строения более устойчивы они превращаются при действии азотной кислоты в нитропроизводные, которые могут быть также получены по реакции Коновалова путем обработки некоторых парафинов разбавленной азотной кислотой при повышенной температуре или по Урбанскому и Слону — действием газообразной N264 на нагретые пары углеводородов (см, далее, стр. 173 и сл,). [c.38]

    В ЭТОЙ связи полезно коснуться одного интуитивного принципа, которым нередко руководствуется химик-органик в своей работе и который раньше называли принципом наименьшего изменения строения в ходе реакции. Фактически в нем выражено основывающееся на громадном исторической и индивидуальном опыте предвидение возможных изменений структуры молекулы в данных условиях. Такое понимание оберегает исследователя от предположения, что, например, при действии азотной кислоты на ацетамид может образоваться нитроциклобутадиен  [c.18]

    Сахара, благодаря наличию в их молекулах альдегидных групп или кето-групп, обладают восстановительными свойствами. Простая проба, позволяющая установить заболевание сахарным диабетом, при котором концентрация глюкозы в крови становится настолько большой, что она частично выделяется с мочой, заключается в кипячении смеси мочи с так называемым раствором Бенедикта (реагентом, содержащим комплексное соединение иона Си2+). При этом ион Си + восстанавливается до Си+ и из раствора выделяется осадок СигО, имеющий цвет от желтого до кирпично-красного. В этом случае глюкоза окисляется до глюконовой кислоты С6Н12О7, имеющей такое же строение, как и глюкоза, за исключением того что вместо альдегидной группы —СНО в кислоте содержится карбоксильная группа —СООН. Сильные окислители, например азотная кислота, превращают глюкозу в глюкаровую кислоту С6Н12О8, у которой карбоксильные группы расположены на обоих концах молекулы. [c.372]

    Пснтаоксид диазота N 05 при обычных ус./ювних — кристаллическое вещество ионного строения (ЫОг )(ЫОз ) — нитрат нитроила. Выше 32 °С он достаточно летуч, в (азовой фазе существуют молекулы ОгЫ—О—N02- Получают ЫгОз либо озоновым окислением диоксида азота, либо де1идратацией азотной кислоты  [c.211]

    Молекуле азотной кислоты отвечает строение НОЫО . Значение (N0) для связи с гидроксильным кислородом равно 1,405 0,005 А, а с каждым из двух других — 1,206 0,005 А. Такое различие ядерных расстояний совпадает с различием средних длин связей С—С (1,54 А) и С=С (1,34 А), что уже само по себе указывает на наличие в молекуле НОЫОз двух двойных связей, т. е. пятиковалентного азота. С этим выводом согласуются и другие свойства азотной кислоты (совершенно отличные от свойств ионных соединений — солей аммония). [c.230]

    Азотный ангидрид (N2O5) представляет собой бесцветные, очень летучие кристаллы. Последние образованы ионами NO и NOJ, а в парах ангидрид состоит из отдельных молекул, строение которых отвечает формуле O2N—О—NO2. Он крайне неустойчив и уже при обычных условиях медленно разлагается на двуокись азота и кислород. Будучи сильным окислителем, азотный ангидрид бурно реагирует со способными окисляться веществами. С водой он образует азотную кислоту. [c.418]

    Двойственную позицию заняли Лауэр и Одда. В работ 1936 г., посвященной нитрованию нитробензола и антрахинона, они проводят резкое различие между механизмами реакции в зависимости от того, протекает ли она в водных или безводных средах. В первом случае нитрующим агентом является, по мнению авторов, недиссоциированная молекула азотной кислоТы, элементы которой присоединяются по двойной связи с последующим отщеплением воды. Следовательно, для этого случая полностью принимается механизм Виланда. Во втором случае, т. е. при нитровании в безводных растворах серной кислоты, авторы считают уже, что нитрующим агентом является нитрацидий сульфат [H2NOз] [НЗО ] , который, присоединяясь по двойной связи ароматического ядра, дает промежуточное соединение. Последнее, отщепляя воду и серную кислоту, переходит в нитросоединение. Такой механизм уже полностью отвечает представлению Ганча о строении азотной кислоты. [c.204]

    Лекарственные вещества, содержащие сурьму в органической молекул напоминают по строению мышьякоргаиические соединения. Для определ( ния сурьмы ич подвергают минерализации с концентрнровапион серно кислотон в присутствии азотной кислоты. [c.211]

    Некоторые из неорганических кислот, например серная, известны химикам очень давно. Однако даже сейчас мы сравнительно немного знаем об особенностях строения (о структурах) неорганических кислот как класса. Это связано главным образом с тем, что многие из них ирн обычных температ рах — жидкости или не могут быть выделены из-за своей низкой устойчивости. Только переход к рентгенографическим исследованиям ирп низких температурах сделал возможным определение структур ряда кислот и их гидратов, жидких ири комнатной температуре (например, серной и азотной кислот и их гидратов). Спектроскопия молекул, замороженных в инертной матрице при низких температурах, открывает возможность исследования строения кислот, которые из-за их неустойчивости не могут быть выделены при обычных условиях (например, HN02 см. разд. 18.8.7, а). В этой главе рассмотрены структуры только безводных кристаллических кислот гидраты кислот рассмотрены наряду с другими гидратами в гл, 15. Строение кислот, исследованных в газообразном состоянии, таких, как НгЗ, НЫз, НЫОз, НЫСЗ и НЫСО, описывается в других главах. [c.38]

    Образование фурандикарбоновой-2,3 кислоты [49, 501 при окислении перекисью водорода указывает на наличие в молекуле (L) незамещенного фуранового кольца. О строении эфирной боковой цепи свидетельствует образование ацетона при окислении хромовым ангидридом и присоединение кислорода к двойной связи при действии надбензойной кислоты с образованием эпоксисоединения, идентичного оксипеуцеданину (стр. 24). Гидрирование дает гек-сагидроизоимператорин, при окислении которого азотной кислотой образуется янтарная кийлота из а-пиронового кольца и v-метил-н-валериановая кислота из боковой цепи. При действии смеси уксусной и серной кислот получается бергаптол и V.Y-Диметилаллиловый спирт. [c.23]


Смотреть страницы где упоминается термин Азотная кислота строение молекул: [c.116]    [c.140]    [c.63]    [c.216]    [c.217]    [c.159]    [c.76]    [c.275]    [c.328]    [c.270]    [c.336]    [c.38]    [c.203]    [c.107]    [c.30]    [c.30]    [c.589]    [c.230]    [c.155]    [c.345]    [c.38]    [c.397]    [c.397]   
Твердые углеводороды нефти (1986) -- [ c.17 , c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота строение

Молекула строение



© 2024 chem21.info Реклама на сайте