Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден сплав с хромом

    Добавка к титану 2%, Рс1 снижает скорость коррозии этого сплава в 10"/ о-1ЮЙ кипящей серной кислоте в 156 раз по сравнению с нелегированным титаном. Еще больший эффект пассивируемости дает легирование палладием сплавов титана, содержащих молибден и хром (рис. 29). [c.67]

    Хотя большинство процессов дегидрирования осуществляется при низком давлении, реакторы выходят из строя вследствие вспучивания п утончения стенок. Даже при низких давлениях чрезвычайно высокие температуры реакций вызывают ползучесть металла и ослабление конструкций. Наиболее устойчивыми к ползучести являются никель и никель-кобальтовые сплавы, поэтому они широко используются наряду с молибденом и хромом. В трубчатых реакторах трубка должна быть закреплена как сверху, так и у основания, чтобы избежать удлинения за счет собственного веса. [c.142]


    Межкристаллитной коррозии могут подвергаться и некоторые сплавы никеля с молибденом и хромом — инконель и ха-стеллой. Эти сплавы используют в химической промышленности для изготовления деталей аппаратуры, работающих в особо агрессивных средах (кипящие концентрированные растворы кислот и щелочей). Склонность таких сплавов к межкристаллитной коррозии, как и в рассмотренных выше случаях, устраняется при помощи соответствующей термообработки. [c.448]

    На основе хрома молшо приготовить и другие сплавы. Ранее (стр. 26) был приведен расчет для приготовления сплава хрома с молибденом. [c.33]

    Сталь, алюминий и его сплавы, магний оксидированный, олово, свинец,серебро, молибден, цирконий Сталь, чугун, алюминий и его сплавы, никель, свинец, олово, хромовые, никелевые, цинковые и кадмиевые покрытия Сталь, чугун, в том числе с покрытиями, алюминий и его сплавы, магний и его сплавы, цинк, кадмий, медь и ее сплавы, олово, серебро, молибден, цирконий Сталь, медь и ее сплавы, хром, никель, свинец, кадмий, цинк, серебро, нейзильбер [c.110]

    К элементам, резко понижающим стойкость сплавов против коррозионного растрескивания, относятся алюминий, олово, медь, ванадий, хром, марганец, железо и никель к элементам, слабо влияющим на понижение коррозионной стойкости, — цирконий, тантал и молибден. Сплавы со структурой а-титана более чувствительны к коррозионному растрескиванию, чем сплавы с -титаном. Термическая обработка приводит к некоторому повышению чувствительности а-сплавов к корро- [c.78]

    Титан, подобно железу, имеет две аллотропические модификации. В сплавах его с алюминием и такими металлами, как ванадий, молибден, ниобий, хром и другие, происходят превращения, похожие на те, которые описаны для стали. [c.22]

    Покрытия сплавом хром — молибден по коррозионным свойствам и внешнему виду не уступают обычным хромовым покрытиям. [c.98]

    Для никеля характерно благоприятное сочетание свойств высокой коррозионной стойкости во многих агрессивных средах, высоких механических свойств, хорошей обрабатываемости в горячем и холодном состоянии. Никель является основой коррозионностойких, жаростойких и жаропрочных сплавов. Никель обладает способностью растворять в большом количестве многие элементы, такие как хром, молибден, железо, медь, кремний. Наиболее важные легирующ,ие элементы в коррозионностойких никелевых сплавах — хром, молибден, медь. Коррозионная стойкость одних никелевых сплавов связана с пассивностью, а других — с тем, что они имеют достаточно высокий равновесный потенциал и не замещают водород в кислых средах. Этим объясняется большое число сред, в которых никелевые сплавы могут с успехом использоваться кислоты, соли и щелочи (как с окислительным, так и с неокислительным характером), морская и пресная вода, а также атмосфера. [c.167]


    Сравнение устойчивости р-твердого раствора сплавов титана, содержащих примерно одинаковое количество легирующих элементов, таких как рений, никель, железо, молибден, вольфрам, хром, показало, что р-твердый раствор титана с вольфрамом более устойчив, чем р-твердый раствор титана с молибденом, железом и хромом, но менее устойчив, чем р-твердый раствор титана с рением и никелем. [c.9]

    А.-ф. может существовать в интервале концентраций от О до 100% (напр., сплавы хром—ванадий, празеодим — неодим). Чаще концентрационная область существования А.-ф. ограничена. Прп охлаждении в А.-ф., которые существуют в широких концентрационных пределах, могут происходить превращения упорядочение (напр., в сплаве медь — золото), расслоение на два твердых раствора с одинаковой кристаллической структурой, но разными периодами решеток (напр., в сплаве хром — молибден), образование промежуточных фаз (напр., в сплаве железо — хром). Эти превращения фиксируются рентгенографически (см. Рентгеноструктурный анализ), сопровождаются изменением электропроводности, теплоемкости, температурного коэфф. линейного расширения и др. Если т-ру снижать, в некоторых А.-ф. (напр., на основе кобальта, гадолиния, хрома) могут происходить магн. превращения (фаза из парамагнитной становится ферро-или антиферромагнитной). При охлаждении до гелиевых т-р (около 4К) возможен переход фазы в сверхпроводящее состояние (см. Сверхпроводимость). [c.53]

    Особое значение для химического машиностроения в силу ценных свойств и высокой коррозионной стойкости приобрели сплавы никеля с медью, молибденом и хромом. [c.117]

    Для выплавки сплавов были использованы технически чистый титан ВТ1, технически чистый молибден, электролитический хром [c.173]

    Тройные сплавы титан—палладий—молибден, а также титан—палладий—хром обладают большей устойчивостью, чем двойной сплав титан—палладий, что связано с уменьшением тока анодного растворения титана вблизи потенциала полной пассивации при легировании его молибденом или хромом. [c.185]

    В сплавах титана с -стабилизирующими элементами могут происходить различные превращения -фазы, например при легировании титана молибденом и хромом кроме a-превраще-ния может происходить и эвтектоидный распад и превращение в промежуточную метастабильную со-фазу, которая является первым продуктом распада -фазы в температурном интервале 200—500 °С [523]. Не вызывает сомнений, что фазовый состав сплавов титана даже при неизменном химическом составе должен оказывать существенное влияние на устойчивость к агрессивному воздействию среды. Это влияние могут, прежде всего, вызывать две причины во-первых, различная растворимость легирующих элементов в а- и -фазах, что может приводить к существенной химической неоднородности сплава во-вторых, неодинаковая энергия связи атомов титана в разных кристаллических решетках. [c.203]

    Сплавы хрома. При соосаждении хрома с другими металлами можно получить покрытия со специальными свойствами или, не изменяя свойств осадков, увеличить выход по току. Например, электролитически полированные покрытия из сплава хром — молибден, содержащие 0,8—1% Мо, при испытании на машине Амслера показали в 3—4 раза большую износостойкость, чем твердые хромовые покрытия [325]. При соосаждении хрома с 1—4% Ре можно получить выход по току до 35% [228]. [c.61]

    Фотометрическое определение малых количеств ниобия в рудах содержащих титан, вольфрам, молибден и хром Фотометрическое определение ниобия в пятиокиси тантала. . Фотометрическое определение ниобия в сплавах с цирконием [c.5]

    Коррозионная стойкость стали может быть повышена путем введения хрома, никеля, молибдена, титана, марганца и некоторых других элементов в различных сочетаниях. Чаще всего встречаются кислотоупорные стали следующих систем железо — хром железо — хром — никель железо — никель — молибден железо — хром — никель — титан железо — хром — никель — марганец и т. д. Эти сплавы принадлежат к нержавеющим сталям. Большинство из них отличается высокой коррозионной устойчивостью в различных агрессивных средах, что объясняется их способностью переходить в пассивное состояние благодаря образованию на поверхности защитных пленок. [c.13]

    При одновременном легировании никеля молибденом и хромом получается сплав, стойкий в окислительных средах, благодаря присутствию хрома, и в восстановительных благодаря молибдену. Один из подобных сплавов, содержащий также несколько процентов железа и вольфрама (хастеллой С) устойчив против питтинговой и щелевой коррозии в морской воде (испытания в течение Ю лет) и не тускнеет в морской атмосфере. Однако сплавы такого типа, хотя и обладают повышенной стойкостью к иону С1 , в соляной кислоте корродируют быстрее, чем бесхромистые никелево-молибденовые сплавы. [c.362]

    В табл. 22.1 представлены составы некоторых промышленных сплавов на основе никеля, содержащих медь, молибден или хром Сплавы N1—Си легко поддаются прокату и механической обра ботке для сплавов N1—Сг эти операции более затруднены Сплавы N1—Мо—Ре и N1—Мо—Сг плохо поддаются обработке [c.362]


    Металлический хром, полученный промышленным алюмотермическим способом, содержит 98% хрома. Основная примесь в нем — железо. При алюмотермическом восстановлении смеси оксидов СггОз с Т10г или МпОз, УгОз, М0О3 н т. Д. получают сплавы хром — титан, хром — марганец, хром — ванадий, хром — молибден. Алюминий можно заменить кремнием, реакция идет при подогреве  [c.377]

    Сплавы хрома с молибденом, ванадием и ниобием имеют износостойкость в 1,5—2.0 раза большую, чем у обычных хромовых покрытий. При высокой и.чкосостойкости они также высоко пластичны, что позволяет использовать покрытия этими сплавами при работе в жестких ус-лоБиях бо.чьших динамических нагрузках, в узлах трения, в агрессивных средах [c.180]

    В сильноокислительных средах никель и его сплавы пассивируются и показывают высокую стойкость. Никель устойчив в щелочах всех концентраций и температур, в растворах многих солей, в атмосфере и в природных водах. Наибольшее применение никель находит в качестве гальванических покрытий. Промышленными сплавами никеля являются сплавы с медью, молибденом и хромом. [c.76]

    Только совсем недавно 3. А. Галлай и Т. Я. Рубинской удалось применить для восстановления перренат-иона очень сильные восстановители-растворы хрома (II) и титана (III). Титруют на фоне 5 М серной кислоты по току окисления восстановителей на платиновом электроде. В предварительном сообщении не указаны потенциалы, при которых рекомендуется проводить это титрование. Метод проверен на анализе двойных сплавов рения с молибденом, вольфрамом, хромом, титаном и на тройном сплаве никель-хром-рений. Если количество хрома и молибдена не превышает количество рения в этих сплавах, то можно определять оба компонента дифференциальным методом. [c.281]

    МЕЖКРИСТАЛЛИТНАЯ КОРРОЗИЯ, интеркристаллит-ная коррозия — разрушение границ зерен вследствие электрохимической коррозии металлов. Вызывает потерю прочности и пластичности металлов, приводит к преждевременному разрушению конструкций. М. к. (рис.) подвержены сплавы на основе железа (железо — никель — хром железо — марганец — никель — хром железо — хром и др.), никеля (никель — молибден никель — хром — молибден), алюминия (алюминий — медь алюминий — магний — кремний) и др. элементов. [c.789]

    Fe), мелкой железной обсечки или стальной (ннзкоуглеродистой) стружки, ферросиликоалюмипия (60—65% Si, 8—12% Al) и флюсов — извести (95% СаО), плавикового шпата (80— 90% aFj). Шихту расплавляют теплом экзотермических восстановительных реакций в футерованной шахте (ковше). Сплав разливают в изложницы и охлаждают под слоем шлака, поставляют в измельченном виде. На его основе выплавляют лигатуры, содержаш пе молибден, железо, хром, никель, вольфрам и др. элементы. [c.643]

    В процессе изготовления аппаратуры и оборудования из коррозионностойких сталей, вследс -вие неправильной термической обработки или при сварке могут возникнуть условия, вызывающие межкристаллитную коррозию. По современным представлениям преимущественное разрушение границ зерен обусловлено электрохимической неоднородностью поверхности, возникающей в определенном для данного сплава интервале температур в результате структурных превращений. Например, при нагреве хромоникелевых сталей при 600—800 °С происходит выделение из твердого раствора сложных карбидов, содержащих хром, железо и никель. Эти карбиды выпадают преимущественно но границам зереи, что приводит к обеднению отдельных участков сплава хромом. Наиболее сильное обеднение наблюдается в зоне, непосредственно прилегающей к границе рерна. Имеются и другие факторы, способствующие межкристаллитной коррозии. Например, для коррозионностойких сталей, содержащих молибден, большое значение приобретает выделение о-фазы, также способствующей обеднению хромом прилегающих к границам участков. Перераспределение хрома в коррозионностойких сталях возможно и в результате выпадения высокохромистого феррита — продукта распада аустенита, что вызывает межкристаллитную коррозию, например, сварных швов. Существует мнение, что на склонность к межкристаллитной коррозии влияют также и внутренние напряжения. [c.55]

    Подробное описание механических свойств металлического рения приводится в статье М. А. Тылкиной и Е. М. Савицкого [28]. Рений образует сплавы и соединения со многими элементами. Некоторые сплавы рения имеют практическое значение и потому изучены особенно подробно — например, сплавы с вольфрамом, молибденом, никелем, хромом, кобальтом, платиной [29—31]. Получены диаграммы состояния рения со многим металлами, дающие представление о характере взаимодействия рения с этими элементами например, установлена полная несмешиваемость рения с медью, серебром и золотом ни в жидком, ни в твердом состоянии, образование непрерывного ряда твердых растворов с кобальтом и осмием, наличие ограниченной рас- [c.27]

    Реактор для проведения процесса карбонилирования, внутренняя поверхность которого выдерживает действие карбоновых кислот и галоидов при повышенных температурах и давлении, описан в патентах [238,239], Реактор выполнен из сплава, содержащего никель, железо, молибден и хром и футерован кислотоупорным материалом, Реппе и др. [240] изучали карбонилирование спиртов или простых нециклических эфиров окисью углерода в присутствии катализатора -карбонила никеля с добавкой галогенида никеля и йода. Высшие oi,iд)-диoлы дают почти исключительно высшие odjW-дикарбоновые кислоты. При карбонилировании бутандиола-1,4 получают метил-глута-ровую и адипиновую кислоты с выходом 61 и 6% соответственно. Реакцию проводят при температуре 260° и давлении 200 атм. [c.130]

    Электролит для нанесения сплава хрома с ванадием и молибденом приведен в табл. 2. Этот электролит имеет выход хрома по току до 25 % и высокую рассеивающую способность. Микротвердость покрытия 10 ООО—11 ООО ЛАПа, износостойкость примерно в два раза выше, чем покрытия из универсальной ванны, внутренние напряжения покрытия пониженные [40]. В табл, 5 приводятся для сравнения свойства покрытий сплавами и хромом из универсального электролита при режиме хромирования (к = 40- -70 А/дм , / = 50 - 70 С. По данным лабораторных исследований положительное влияние на сплав хрома с ванадием оказала добавка в электролит хлорамина Б [43], Твердость сплава достигает 12 500 МПа выход по току 20—30 % защитная способность сплава слоем толщиной 20 мкм в два раза выше такого же слоя хрома при испытаниях в 3% растворе хлористого натрия и в 1,5 раза выше при испытании во влажной камере. Состав электролита, г/л хромовый аигидрид — 250 серная кислота — 5 ванадиевая кислота — 15—20 хлорамин Б — 4. Режим / = 304-70 А/дм , < = 504-60°С. В покрытии содержится 0,4—0,6 % ванадня. [c.19]

Таблица 5. Мехаиическне свойства сплавов хрома с ванадием и молибденом Таблица 5. Мехаиическне <a href="/info/4665">свойства сплавов</a> хрома с ванадием и молибденом

Смотреть страницы где упоминается термин Молибден сплав с хромом: [c.370]    [c.181]    [c.22]    [c.38]    [c.534]    [c.566]    [c.685]    [c.272]    [c.682]    [c.154]    [c.209]    [c.180]    [c.159]    [c.79]    [c.348]    [c.292]    [c.97]   
Руководство по неорганическому синтезу (1953) -- [ c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Груздева, А. С. Адамова. Влияние железа, никеля и хрома на коррозионные и механические свойства сплавов цирконий — молибден — ниобий и цирконий — мель — олово

Груздева, А. С. Адамова. Влияние кремния, олова и хрома на коррозионные и механические свойства сплавов цирконий — молибден — ниобий

Молибден сплавы

Пятницкий, И. А. Трегубое. Влияние железа, никеля и хрома на коррозионную стойкость и механические свойства сплавов системы цирконий — медь — молибден

Робертс В. X., Антифрикционные и противоизносные свойства сплавов молибдена, вольфрама и хрома при высоких температурах в среде натрия

Сплавы вольфрама и молибдена с хромом

Сплавы никеля с молибденом и никеля с молибденом и железом (хромом)

Сплавы хрома

Электроосаждение металлов на титан и его сплавы, а также на хром, молибден, вольфрам и нержавеющую сталь



© 2025 chem21.info Реклама на сайте