Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Меди хромит

    Защитные покрытия. Слои, искусственно создаваемые на поверхности металлических изделий и сооружений для предохранения их от коррозии, называются защитными покрытиями. Если наряду с защитой от коррозии покрытие служит также для декоративных целей, его называют защитно-декоративным. Выбор вида покрытия зависит от условий, в которых используется металл. Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, никель, медь, хром, серебро и др.), так и их сплавы (бронза, латунь и др.). По характеру поведения металлических покрытий при коррозии их можно разделить на катодные и анодные. К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. В качестве примеров катодных покрытий на стали можно привести Си, N1, Ag. При повреждении покрытия (или наличии пор) возникает коррозионный элемент, в котором основной материал в поре служит анодом и растворяется, а материал покрытия — катодом, на котором выделяется водород или поглощается кислород (рис. 74). Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждений покрытия. Анодные покрытия имеют более отрицательный [c.218]


    Наиболее распространенным способом защиты от атмосферной коррозии является применение соответствующих металлов и сплавов, достаточно устойчивых в промышленных эксплуатационных условиях. Повышение коррозионной устойчивости обычных марок углеродистых сталей достигается их легированием более благородными элементами или созданием на их поверхно сти пассивного состояния. Примером получения сплавов, более стойких в атмосферных условиях, чем обычные черные металлы, является легирование последних медью, хромом, никелем, алюминием и др. [c.182]

    Ионы разных металлов можно осадить из раствора раздельно, постепенно повышая pH добавкой щелочи. Таким путем может быть очищен раствор соли от загрязняющего его иона металла, если pH осаждения его гидроксида меньше, чем pH осаждения гидроксида металла, входящего в состав очищаемой соли. В противном случае прн введении в раствор щелочи сначала будет осаждаться гидроксид соле-образующсто металла, а ионы загрязняющего металла останутся в растворе. Поэтому, например, из растворов солей меди, хрома, цинка, алюминия и некоторых других [c.257]

    Реакции глубокого окисления органических веществ катализируются переходными металлами и их окислами. Наиболее активны металлы платиновой группы и окислы железа, меди, хрома и других металлов. Отличительной особенностью процессов термокаталитической очистки яв ляется отсутствие системности в свойствах катализаторов и окисляемых веществ, поэтому можно рассматривать лишь некоторые их харак-те]шые тенденции. В частности, к наиболее трудно окисляемым органическим примесям относятся предельные углеводороды, при этом увеличение молекулярной массы этих веществ позволяет проводить процесс окисления при более низких температурах так, скорость окисления бутана на оксидных катализаторах в 10 раз выше, чем скорость окисления метана [11]. Значительно легче окисляются непредельные и ароматические углеводороды, например в присутствии двуокиси марганца пропилен при 300 °С окисляется в 10 раз, а пропан - почти в 10 раз медленнее, чем ацетилен [12]. При окислении кислородсодержащих органических веществ легче других соединений окисляются спирты, затем следуют альдегиды, кетоны, эфиры, кислоты [13-16]. [c.10]

    С фтором практически не реагируют или реагируют весьма незначительно инертные газы, фториды тяжелых металлов, фторопласты, а также висмут, цинк, олово, свинец, золото и платина. Медь, хром, марганец, никель, алюминий, нержавеющая сталь при отсутствии воды практически стойки в контакте с фтором вследствие образования на их поверхности прочной защитной пленки соответствующего фторида. [c.128]


    Драгоценные металлы извлекают из отработанных катализаторов для повторного использования, а большинство наиболее часто используемых в катализаторах металлов, среди которых и такие дорогостоящие, как никель, кобальт, медь, хром, повторно не используется. Этому препятствует главным образом присутствие в отработанном катализаторе органических остатков. Хотя удаление органических остатков удорожает процесс извлечения металлов, его необходимо проводить, так как в противном случае нарушается технология разделения металлов и загрязняются сточные воды. Вторичному использованию металлов катализаторов мешает также то обстоятельство, что многие [c.28]

    Кислотные продукты окисления образуют с металлами (железом, медью, хромом, никелем, свинцом, серебром, оловом, кадмием и алюминием) соли этих металлов. Во время эксплуатации масел эти соли способны катализировать процесс окисления углеводородов. Соли железа, меди и свинца, очевидно, являются наиболее вредными соединениями, но реакция масел и масляных фракций на присутствие в системе этих металлов различна. [c.87]

    В 1924 Г., применившим в качестве катализатора ZnO. Затем оксид цинка стали активировать оксидом хрома (8 масс. ч. ZnO а 1 масс. ч. СггОз). Более активны, но требуют тонкой очистки реагентов оксидные медь-хромовые и цинк-медь-хромо-Бые катализаторы. [c.528]

    Гидрирование фталевых кислот и их эфиров. Гидрирование трех изомерных фталевых кислот в циклические спирты осуществляется с большим трудом. Ароматическое кольцо гидрируется значительно хуже, чем в бензоле или феноле. При прямом гидрировании фталевых кислот существенное развитие имеют побочные реакции. Так, при использовании металлических катализаторов на основе меди, хрома, никеля, кобальта и платины происходит не только насыщение кольца, но и декарбоксилирование. Полученный продукт содержит циклогексан и моно-карбоновую кислоту. [c.49]

    Катализаторами, ускоряющими окисление бензинов и дизельных топлив при хранении, могут быть металлические поверхности резервуаров и трубопроводов, а также оксиды и соли, покрывающие эти поверхности. Ускорение окисления вызывается, кроме того, оксидами и солями металлов, которые могут находиться в топливах в виде тонкодисперсной взвеси. Каталитическую активность в основном проявляют металлы переменной валентности— железо, медь, хром, марганец, кобальт [66]. [c.58]

    Никелевые катализаторы, применяемые при низкотемпературной (300 С) и высокотемпературной (820° С) конверсии, промотируют медью, хромом и марганцем [c.121]

    Поиски присадок для устранения детонации в двигателях внутреннего сгорания проводятся уже более 70 лет. Наиболее эффективные антидетонаторы найдены среди органических производных свинца, олова, таллия, висмута, селена, теллура, марганца, железа, кобальта, никеля, меди, хрома и других металлов. В частности, как антидетонаторы были изучены алкилы металлов, их карбонилы, внутрикомплексные соли, соединения сэндвичевого строения и т.д. [25, 26]. [c.231]

    В качестве металлорганических антидетонаторов испытаны соединения железа, меди, хрома, кобальта и др. Однако по разным причинам практического применения они не получили. [c.170]

    Все эти данные, полученные для гомогенных катализаторов, т. е. для условий, не осложненных явлениями диффузии, адсорбции и десорбции, характеризуют явление в более чистом виде, подтверждая, в частности, промежуточное образование л-комплексов. Характерно, что гидрирование бензола на меди, хроме, марганце, ванадии, титане отмечается впервые, оно не наблюдалось на гетерогенных катализаторах. [c.138]

    Кинетические закономерности каталитического окисления дизельного топлива изучали по поглощению кислорода манометрическим методом при 100-140°С. В качестве катализаторов исследовали соли кобальта, меди, хрома и железа [83, 89]. [c.109]

    Современная техника моторостроения также нуждается в жаростойких материалах, устойчивых к газовой коррозии. На основе кобальта и хрома был выпущен целый ряд жаропрочных сплавов. Кобальт оказался полезным и в составе массивных магнитов. Известно и большое число кислотоупорных сплавов кобальта с медью, хромом и оловом. Кобальтовое покрытие или электролитический сплав кобальта и никеля очень устойчив, хорошо полируется и имеет красивый вид. Кобальт в настоящее время применяется и как катализатор. [c.400]

    Легирование является эффективным средством повышения стойкости металлов к воздействию агрессивных сред как при обычных, так и при повышенных температурах. Уже отмечалось, что легирование железа хромом или алюминием способствует повышению стойкости к окислению (разд. 10.9), а введение небольшого количества легирующих добавок меди, хрома или никеля улучшают стойкость в атмосфере (см. разд. 8.4). [c.292]

    Реакцию окиси углерода с формальдегидом проводят при 150—200 " и 700 ат в присутствии серной кислоты или трехфтористого бора как катализатора [135]. Метиловый эфир гликолевой кислоты восстанавливают нри 200—225° над катализатором медь — хромит бария водородом под давлением 20-40 а/га [136]. [c.405]

    Работа 12. Концентрирование микроколичеств меди, хрома цинка методом экстракционной колоночной хроматографии. Работа 13. Разделение на бумаге смеси ионов марганца(П  [c.7]

    Работа 12. Концентрирование микроколичеств меди, хрома и цинка методом экстракционной колоночной хроматографии [c.334]


    Сточные воды гальванических цехов. Эти воды содержат в своем составе ядовитые вещества (цианиды, медь, хром и т. д.), концентрация которых редко бывает ниже 10 мг/л. Иногда, если перед промывкой изделий не дают с них стечь электролиту, она возраста ет до 1000 мг/л. Особенно вредны цианиды щелочных металлов, [c.215]

    В каждом образце промышленной воды определяют еще компоненты, которыми загрязняется вода в процессе ее образования. Например, железо, медь, хром, кобальт, никель, цинк, кадмий, ртуть, сульфаты, сульфиты, цианиды, фенолы, формальдегид, синтетические поверхностно-активные вещества (СПАВ) и др. [c.218]

    Высоколегированные чугуны, содержащие 18...30% никеля, а также добавки меди, хрома и марганца, характеризуются высокой стойкостью в растворах щелочей и в разбавленных растворах некоторых неорганических кислот. [c.15]

    Технология получения глазурей с заданными свойствами с добавлением осадков сточных вод гальванических производств разработана в Германии [237]. Высокое содержание в гальваношламе меди, хрома, никеля и цинка обеспечивает интенсивную окраску даже при небольшом (0,5—1,0 %) его количестве в смеси. В сочетании со сланцевым порошком он позволяет получать глазури горчичного цвета или цвета жженого сахара. Добавление гальваношлама к глазурям для санитарной керамики не приводит к ухудшению поверхности глазури. [c.215]

    Хранить в стеклянных, алюминиевых или полиэтиленовых сосудах с отверстием для выхода газа, изолированно от горючих материалов и металлов, разлагающих перекись (железа, меди, хрома) [c.643]

    Новейшим типом катализаторов для восстановления являются смеси окислов неблагородных металлов, например окислы хрома и меди, хрома и цинка и др., которые действуют исключительно при больших давлениях и высоких температурах.  [c.530]

    Положительное влияние фреттинг-коррозии показывает диффузионное насыщение поверхности детали хромом, бромом и ванадием и комплексно бором и медью, хромом и углеродом [48 ]. Это объясняется высокой твердостью и износостойкостью диффузионных слоев. [c.91]

    Основную массу отходов производства резинотехнических изделий вывозят на свалки или сжигают. Это приводит к загрязнению атмосферы, подпочвенных вод, исключению из севооборота сотен гектаров земли. Отходы производства резинотехнических изделий перерабатывают с помощью различных методов деструкции нолнмеров термической, термокаталитической в присутствии соединений марганца, ванадия, меди, хрома, молибдена или вольфрама с применением химических агентов (кислот Льюиса, нитрозосоединений, окислительно-восстановительных систем и др.) биохимической, механохимической, фо-тоокислнтелыгай, ультразвуковой и др. [c.142]

    Кроме ванадия и никеля в остатках обнаружены натрий, кальций, магний, которые концентрируются во фракциях смол, железо (в асфальтенах), а также следы ишогих других металлов (медь, хром, титан, кобальт, молибден, свинец, олово, цинк, марганец и др.). [c.18]

    Из данных табл. 2 видно, что гидрированию дифенилолпропана с расщеплением молекулы способствуют никелевые катализаторы с добавками висмута или сульфида меди, хромит меди и малоактивные никелевые катализаторы. Никель Ренея, а также рутений на А12О3 (в 7-форме) обеспечивают полное гидрирование арб 1атиче-ских ядер без расщепления молекулы. [c.12]

    Однако можно подобрать такой состав электролита, что при определенном режиме работы ванны анодный окислительный процесс будет приводить к образованию гладкой, блестяш,ей поверхности металла. Это — процесс электрохимического полирования [злек-трополировка). При этом можно добиться удаления даже очень мелких шероховатостей размером менее 0,01 мк (глянцевание). Таким путем получают зеркальные поверхности у алюминия, меди, хрома, никеля, серебра, стали и ряда других металлов и сплавов. [c.342]

    Антидетонационными свойствами обладают соединения свинца, олова, таллия, висмута, селена, теллура, марганца, железа, кобальта, никеля, меди, хрома и ряда других металлов. Как антидетонаторы были изучены алкилы металлов, карбонилы, вну-трикомплексные соли, соединения сэндвичевого строения [1, 2]. Эффективность соединений свинца и марганца будет рассмотрена ниже остановимся лишь на антидетонационныз свойствах соединений других металлов. [c.127]

    По данным некоторых источников, небольшие количества легирующих добавок, таких, как цинк, медь, хром и др,, снижают склонность алюминиевомагниевых сплавов к коррозионному растрескиванию. Так, сплав, содержащий 5% и 0,2—1 /о 2п, менее склонен к коррозионному растрескиват1Ю, [c.105]

    Влияние меди, хрома, никеля, молибдена и других легнрую-Ш.ИХ элементов на коррозионную стойкость железоуглеродистых n iiari B рассматривается ниже, [c.200]

    Алюмомеднохромовый катализатор НИИОГАЗ-8Д представляет собой смесь оксидов меди, хрома и алюминия [14]. Устойчиво работает прп температурах до 700°С. [c.174]

    ГЛАЗУРЬ (нем. Glas — стекло) — тонкое стекловидное покрытие на керамических изделиях, получаемое нанесением на поверхность изделия кремнезема и глиноземно-щелочных силикатов и оксидов металлов с последующим обжигом в печах при температуре до 1400° С. Глазурованные керамические изделия водонепроницаемы, устойчивы против действия кислот и щелочей, имеют привлекательный внешний вид. Сырьем для изготовления Г. служат кварц, полевой шпат, карбонаты кальция или магния, каолин, сода, поташ, селитра, бура, хлорид натрия, свинцовый сурик и др. Для окрашивания Г. в их состав вводят оксиды или соли кобальта, меди, хрома, марганца, железа и др., которые при сплавлении растворяются в Г. с образованием окрашенных силикатов. Для получения Г. белого цвета добавляют 5—10% криолита, диоксида олова или циркония. [c.76]

    Механизм действия противодымных присадок детально пока не выяснен, а имеющиеся данные весьма противоречивы. Д. В. Голотан [22] считает, что барий пре-пятствует дегидрагенизации молекул углеводородов и -тем самым снижает образование сажи, т. е. бариевые I присадки действуют на первой стадии этого процесса. Ряд авторов [19, 23] существенную роль в снижении сажеобразования при сгорании топлив отводит каталитическому действию ряда элементов, снижающих температуру сгорания углерода в воздухе. Известно, что свинец, медь, хром и некоторые другие метал так же как и барий, снижают температуру сгорания углерода другие же металлы, наоборот, несколько увеличивают сажеобразование. Опыты показывают, что натрий снижает температуру воспламенения углерода в воздухе на 248°, а барий — на 104°. Однако эффективность бария в снижении сажеобразования несравненно выше. [c.59]

    Данные о платиновых, рутениевых катализаторах и никеле Ренея приведены в гл. 13. В гл. 15 содержатся сведения о фомитах меди. Хромит меди перед использованием в реакциях дегидрогенизации восстанавливают в токе водорода при 200-300°С, причем в описанных процессах дегидрирования рекомендуется использовать катализаторы, не содержащие ВаО. [c.82]

    Алюмосиликатным катализаторам в литературе уделяется много внимания. Эти катализаторы очень разнообразны по методам приготовления, обработки и активирующим добавкам. Так, например, применяют алюмогидросилнкаты или алюмосиликаты, содержащие 0,5—1% солей железа, никеля, кобальта, меди, хрома, марганца н обработанные сероводородом для придания стойкости к сере, имеющейся в крекинг-сырье. Катализаторы приготовляют в виде таблеток или пилюль для использования на установках с неподвижным контактом или при термофор-процессе для флюид-процесса их превращают в тонкую пыль (стр. 314). [c.311]

    Для повышения скорости горения смесевых топлив используют катализаторы, содержащие окислы меди, хрома, железа, магния, железных, медных и магниевых солей хромовой и метахромистой кислот, металлоорганических соединений. Так, ферроцен увеличивает скорость горения топлива на основе перхлората аммония в 2 раза. Для снижения скорости горения в качестве ингибиторов горения применяют фтористые соединения (1лР, Сар2, ВаРз) и гетеромолибдаты. Так, добавка 2 % Ь1Р к полиуретановому топливу снижает скорость горения в 2 раза. [c.8]

    На станции нейтрализации автозавода Коммунар система сбора и обработки стоков позволяет вьщелить никельсодержащие сточные воды, и после их защелачивания, отстаивания и отжима на ФПАКМ-2,5 получить шлам 65-70 %-ной влажности с содержанием никеля 15-20%. По химическому составу шлам представляет собой смесь гидроокисей, гидрокарбонатов, карбонатов никеля и в небольших количествах железа, меди, хрома, цинка. Содержание примесей тяжелых металлов колеблется от 2 до 5 % [c.74]

    Препарат реактиввой квалификации можно получить очисткой технического продукта, содержащего примеси солей щелочных металлов, алюминия, меди, хрома и др. [c.39]


Смотреть страницы где упоминается термин Меди хромит: [c.409]    [c.18]    [c.225]    [c.454]    [c.202]    [c.16]   
Синтез органических препаратов Сб.4 (1953) -- [ c.414 ]

Каталитические, фотохимические и электролитические реакции (1960) -- [ c.82 , c.135 ]




ПОИСК







© 2025 chem21.info Реклама на сайте