Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение металлов

    На электролизе водных растворов солей основано также и электроосаждение — выделение металла на катоде в виде плотного или порошкообразного осадка. Этот метод служит для получения гальванических покрытий, копий и матриц — в первом случае, или при извлечении, очистке и разделении металлов с получением металлических порошков — во втором случае. [c.251]

    Драгоценные металлы извлекают из отработанных катализаторов для повторного использования, а большинство наиболее часто используемых в катализаторах металлов, среди которых и такие дорогостоящие, как никель, кобальт, медь, хром, повторно не используется. Этому препятствует главным образом присутствие в отработанном катализаторе органических остатков. Хотя удаление органических остатков удорожает процесс извлечения металлов, его необходимо проводить, так как в противном случае нарушается технология разделения металлов и загрязняются сточные воды. Вторичному использованию металлов катализаторов мешает также то обстоятельство, что многие [c.28]


    Наоборот, на растворимость осадков, являющихся солями слабых кислот, кислотность раствора оказывает очень существенное влияние Так, ионы jO "" могут взаимодействовать с ионами кальция, образуя осадок щавелевокислого кальция. HoBbi O " могут реагировать такл е с ионами Н , образуя молекулы слабой щавелевой кислоты. Образование или растворение щавелевокислого кальция, степень осаждения кальция и другие характеристики равновесия зависят от концентраций реагирующих веществ, а также от величин константы диссоциации кислоты и произведения растворимости осадка. Величины произведений растворимости углекислого бария и щавелевокислого бария почти одинаковы. Однако угольная кислота слабее щавелевой, т. е. анион СО при прочих равных условиях связывается с ионами водорода сильнее, чем анион С О . Поэтому ВаСО, легко растворяется в уксусной кислоте, а растворимость ВаС О при тех же условиях почти не изменяется. Если два осадка являются солями одной и той же кислоты, например сульфидами, то при прочих равных условиях растворимость в кислотах зависит от величины произведения растворимости. Известно, что путем изменения концентрации ионов водорода достигаются многочисленные разделения катионов в виде сульфидов, фосфатов и других соединений металлов с анионами слабых неорганических и органических кислот. Таким образом, значение кислотности раствора для осаждения и разделения металлов очень велико. [c.39]

    Ранее определение бериллия было одной из весьма трудных задач, так как свойства ионов бериллия очень похожи на свойства ионов алюминия и ряда др. металлов, сопутствующих бериллию. Позже было найдено, что этилендиаминтетрауксусная кислота (трилон) почти не связывает бериллия, но дает очень прочные комплексы с алюминием и др. металлами . Это дало основание для разработки быстрых и точных методов определения бериллия. Маскирующие вещества широко и с успехом применяются для разделения металлов в весовом, фотометрическом, полярографическом, объемном и др. методах анализа. [c.108]

    Электролитическое разделение металлов [c.432]

    В последние годы экстракция нашла широкое применение для разделения металлов и получения их в состоянии высокой чистоты. Во многих случаях она является единственным методом, который удается применить в промышленном масштабе, например, при очистке металлов, служащих топливом для атомных реакторов. Это относится как к металлам природного происхождения (уран, торий), так и к являющимся продуктами облучения (плутоний). С помощью экстракции разделяются также и другие металлы из семейства актинидов. С успехом решено разделение циркония и гафния, а также тантала и ниобия—металлов, встречающихся в природе всегда парами и, благодаря большому химическому подобию, трудных для разделения другими методами. Экстракцией можно выделить из отбросных продуктов промышленности (шлак, зола, шлам) содержащиеся в них следы различных металлов, имеющих важное техническое применение (германий, индий, церий и др.). [c.424]


    Электролитическое разделение металлов 433 [c.433]

    Не останавливаясь на составе ионообменников, следует указать, что ныне их применение открывает чрезвычайно большие возможности для извлечения ценных металлов из слабоконцентрированных растворов, промывных вод, разделения металлов, присутствующих в растворе, а также очистки растворов солей от примесей. Известно, например, что некоторые из группы редкоземельных металлов можно совершенно освободить от их соседей по группе посредством ионного обмена 2. Посредством ионного [c.578]

    Из рассмотренного примера ясно значение комплексообразования при электролитическом разделении металлов. [c.434]

    Основным физическим условием электролитического разделения металлов является определенное напряжение тока, при котором осаждаются одни металлы и не выделяются другие. Основным химическим [c.189]

    Это дает возможность, надлежащим образом выбирая аноды, а также употребляя различные соли (простые и комплексные) и регулируя реакцию среды, добиться весьма четкого разделения металлов даже тогда, когда потенциалы их близки друг к другу. [c.449]

    Какую пользу при электролитических разделениях металлов может принести связывание образуемых ими ионов в комплексы  [c.457]

    В последнее время перегонку стали щироко применять для очистки металлов, особенно в тех случаях, когда низкокипящую часть силава можно отделить в виде иаров от высококипящей [113]. Это условие,соблюдается при перегонке бинарных сплавов А1—2п, А1—М , РЬ—2п, Ag—2п и Ag—РЬ. Значения давлений паров различных металлов можно найти в справочнике Лейбольда [114]. Для реализации процесса разделения металлов в лаборатории, необходимо сначала освоить соответствующую аппаратуру для получения небольших количеств веществ. На рис. 183 показаны два лабораторных устройства для перегонки металлов с боковым и нижним отводами потока паров [115]. [c.260]

    Применение жидких ионитов. Многие амины с длинной цепочкой органического радикала нерастворимы в воде, но растворимы в органических растворителях. При встряхивании таких растворов с водными растворами электролитов амины ведут себя как обычные аниониты. Это создает новые возможности ускорить анализ и использовать данные, накопленные при разработке методов разделения металлов путем экстрагирования. [c.75]

    Ряд более тонких разделений металлов в виде гидроокисей можно выполнить с помощью слабых органических оснований, как, например, пиридин, уротропин и др.  [c.96]

    Из приведенной характеристики видно, что электроанализ в некоторых случаях является весьма удобным методом для количественного определения и разделения металлов. [c.190]

    Ряд напряжений имеет большое значение для всех электрохимических методов анализа. В электроанализе ряд напряжений позволяет вычислить напряжение разложения электролита и дает возможность предвидеть условия разделения металлов. [c.192]

    ХЕМОСОРБЦИЯ (хемисорбция, или химическая сорбция) — процесс поглощения (адсорбции) газов, паров или растворенных веществ твердыми или жидкими поглотителями (адсорбентами), сопровождающийся образованием химических соединений. X. широко применяется в промышленности для очистки газов, дегазации, разделения металлов, а также в научных исследованиях. [c.273]

    В случае необходимости разделения металлов иногда приходится ограничивать напряжение. При этом, очевидно, напряжение целесообразно повышать только до тех пор, пока еще не будет превышено напряжение разложения для раствора соли второго металла. Так, например, для разделения серебра и меди в растворе их сульфатов следует применять напряжение не выше 1,4 в. Эта величина соответствует напряжению разложения [c.196]

    Условия разделения металлов, как видно из рассмотренного примера, сильно зависят от кислотности раствора. Большое значение имеет характер присутствующих анионов. Характер электролитических осадков металлов зависит от присутствия ионов, образующих комплексы с ионами металлов. Из растворов комплексных солей обычно получаются более плотные осадки даже при больших плотностях тока. Условия электролитического разделения металлов также нередко зависят от присутствия различных веществ, образующих комплексы с ионами металлов. [c.198]

    Известно, что, даже не изменяя принципа метода анализа, можно нередко получать более точные результаты, если затратить при выполнении анализа дополнительный труд и время. Так, при разделении металлов осадок, содержащий примеси, можно-растворить и повторить осаждение. Можно также выполнить несколько параллельных определений и взять средний результат. [c.478]

    В практике некоторых аффинажных заводов применяют следующую методику электрохимического разделения металлов платиновой группы. Платиноидные шламы или шлиховую платину растворяют в горячей царской водке при непрерывном подогреве. В раствор переходят пр этом все металлы платиновой группы. Переходу в раствор этих металлов, обычно нерастворимых в царской водке, способствует то обстоятельство, что в сплаве они находятся в форме твердого раствора (см. гл. П, 2). [c.258]


    Л. М. Гиндин, П. И. Бобиков. Разделение металлов методом экстракции, Основы металлургии, т. I, ч. II, 1961. [c.574]

    Из этого краткого перечня видны большие возможности для-разделения металлов путем экстракции из водных растворов. [c.575]

    Важнейшим методом разделения металлов является их электролитическое выделение на ртутном катоде. Поскольку перенапряжение водорода на ртути превышает 1 В, из раствора можно выделить многие металлы. Однако алюминий, скандий, титан, ванадий, вольфрам и некоторые другие даже и в этих условиях не могут быть выделены, а ионы щелочных и щелочноземельных металлов восстанавливаются только в щелочном растворе. Напротив, железо можно успешно удалить электролитическим путем из переведенного в раствор алюминиевого сплава. Указанный способ можно также применять для очистки растворов урана. Выделение веществ на ртутном катоде чаще всего проводят при контролируемом потенциале, опти- [c.265]

    Имеет ярко выраженный аро-8е матический характер и своеобразные химические свойства. Впервые С. был синтезирован в 1927 г. взаимодействием ацетилена с селеном. Многие производные С. применяют как лекарственные препараты, экстрагенты для разделения металлов, антиоксиданты. [c.222]

    В). Это может быть использовано для аналитического разделения металлов. [c.164]

    Сероводородная кислота дает два ряда солей — сульфиды и гидросульфиды. Большинство сульфидов нерастворимо в воде н это используется для определения и разделения металлов. К рас-, творимым сульфидам относятся сульфиды щелочных, ш,елочно-земельных металлов и аммония. Все они подвергаются в водном растворе гидролизу  [c.159]

    Электрохимическое разделение металлов из смеси их катионов используется в технике и в количественном анализе. [c.340]

    При разделении металлов фронтальным методом на такой адсорбционно-комплексообразовательной колонке порядок их поступления в фильтрат определяется величиной констант неустойчивости соединений этих металлов с комплексообразующим агентом первым в фильтрат проходит катион, образующий наименее прочный комплекс. Разумеется, отделение катионов, не реагирующих с данным комплексообразующим реагентом, от катионов, образующих с ним прочные соединения, является особенно полным. [c.218]

    Все металлы, за исключением ртути, являются твердыми веществами. Ртуть — единственный металл, жидкий при обыкновенных условиях температура плавления равна -39°С. Большинство металлов имеет цвет от темно-серого до серебристобелого, В промышленности существует разделение металлов на черные и цветные. [c.234]

    В промышленности имеет место исторически сложившееся разделение металлов на черные и цветные . К первым относятся железо и сплавы на его основе, ко вторым относят -ся медь и силавы на ее основе. Платиновые металлы, серебро и золото относятся к благородным металлам . [c.55]

    Разделение металлов на простые (зр) и переходные (с дефектными с1- и /-оболочками), обусловленное особенностями электронного строения атомов, проявляется и в существенном различии их металлохимических свойств. При этом под металлохимическими свойствами подразумевают не только ионизационные потенциалы и электроотрицательность, атомные радиусы и валентно-электронную конфигурацию изолированных атомов, но и особенности конденсированного состояния, определяющие характер взаимодействия компонентов (расслоение, эвтектика, ограниченный твердый раствор, непрерывный ряд твердых растворов, химические соединения). Несмотря на то что взаимодействие металлов друг с другом (и с неметаллами) осуществляется на атомном уровне, металлохимических свойств изолированных атомов недостаточно для полного описания специфики взаимодействия в конденси]юванном состоянии. Это связано с коллективизацией электронов гри образовании металлических кристаллов. Тем не менее металлохимические свойства элементов позволяют в первом приближении оценить возможность и характер взаимодействия в металлических системах. [c.370]

    Осаждение суспензиями гидроокисей. Осаждение гидроокисью аммония вызывает местное повышение щелочности раствора на границе соприкосновения капли реактива с анализируемым раствором. Кроме того, раствор гидроокиси аммония поглощает углекислый газ из воздуха и поэтому содержит немного углекислого аммония это приводит к частичному осаждению углекислого кальция и других углекислых солей вместе с гидроокисями алюминия и железа. Поэтому иногда для разделения катионов в виде гидроокисей применяют другие методы, особенно часто — осаждение суспензиями различных гидроокисей. Из табл. 5 ясно, что всякая более растворимая гидроокись может осаледать гидроокись менее растворимую, т. е. осаждающуюся при меньшем значении pH. Гидроокись, осаждающаяся при меньшем значении pH, не осаждает гидроокиси, осаждающейся при более высоком значении pH. На этом основан ряд методов разделения металлов. [c.96]

    Второе важное требование к осадку — его чистота, соответствие состава осадка определенной формуле. Это требование выполняется при электролитическом осаждении значительно лучше, чем при обычных мэтодах весового анализа. Осадитель (электроны) одинаков для ионов различных металлов, тем не менее ири соблюдении определенных физических и химических условий разделение металлов происходит количествеиио. [c.189]

    ЭДТА и др. производные иминодиуксусной кислоты широко применяются не только для титрования, но и в др. методах анализа и разделения металлов, в частности, как маскирующие вещества в различных процессах осаждения и экстрагирования, а также в извлечении поглощенных ионов с ионообменников. [c.433]

    ИОНИТЫ — твердые, практически нерастворимые в воде и органических растворителях вещества, способные обце-нивать свои ионы на ионы раствора. Sto природные или синтетические материалы минерального или органического происхождения. Подавляющее большинство современных И.— высокомолекулярные соединения с сетчатой или пространственной структурой. И. делят на катиониты (способные обменивать катионы) и аниониты (обменивают анионы). Катиониты содержат сульфогруппы, остатки фосфорных кислот, карбоксильные, оксифениль-ные группы, аниониты — аммониевые или сульфониевые основания и амины. Обменную емкость И. выражают в миллиграмм-эквивалентах поглощенного иона на единицу объема или на 1 г И. Природные или синтетические И.— катиониты — относятся преимущественно к группе алюмосиликатов. Аниониты — апатиты, гидроксиапатиты и т. д. Метод ионного обмена очень широко используется в промышленности и в лабораторной практике для умягчения или обессоливания воды, сахарных сиропов, молока, вин, растворов фруктозы, отходов различных производств, удаления кальция из крови перед консервированием, для очистки сточных вод, витаминов, алкалоидов, разделения металлов и концентрирования ионов. И. применяют как высокоактивные катализаторы в непрерывных процессах и т. п. [c.111]

    Ц. используют при извлечении золота и серебра нз руд методом цианирования. Этот процесс гидрометаллургии осиоиан на растворении металла в цианидных растворах. Ц. используют для гальванического покрытия металлами различных изделий (золочение), в органическом синтезе, иногда для азотирования стали, в аналитической химии, для разделения металлов. Ц. очень токсичны. [c.284]

    Та же цель достигается при разделении металлов в виде хлоридных комплексов по методу Крауса на анионитах (рис. XI. 6). Рассмотрим разделение малых количеств ионов тяжелых металлов (N1, Мп, Ре, Си, Со, 2п) на анионитовой колонке. В солянокислом растворе ионы этих металлов образуют хлоридные комплексы типа [МС1з] , [МС14] прочность которых возрастает в ряду №(П), Мп(П), Со(П), Си(П), Ре(1И), 2п 11). Для малых концентраций иона металла величиной, определяющей рав- [c.690]

    А. Разделение катионов в присутствии комплексообразующих веществ. Разделение металлов в среде хлористоводородной кислоты. Разделение металлов может быть основано на их свойстве образовывать хлоридокомплексы в концентрированных растворах хлористоводородной кислоты. [c.206]

    Катионы, образующие в этих условиях комплексные хлоридные ионы, полностью поглощаются анионитами. Сорбция анионов зависит от концентрации как ионов металлов, так и комплексообразующих ионов и pH среды. Изменяя концентрацию хлоридных ионов, можно осуществить ряд разделений металлов. Например, олово, сурьма, теллур, предварительно поглощенные высокоосновными анионитами в виде ионов [5пС1б] , [5ЬС1б] и [РеС1б] , могут быть последовательно извлечены из ко- [c.206]

    Соединения платиноидов используются в меньшей степени. Так, Рс1С12 используют как индикатор на угарный газ СО в атмосфере, поскольку СО Б растворах способен восстанавливать РсЗО до металлического палладия. Интерметаллические соединения платиноидов оказались перспективными сверхпроводниками со сравнительно высокими критическими температурами сверхпроводимости. Производные платины (+6), например Р1Рц, используются в неорганическом синтезе как суперокислители. Комплексные соединения платиноидов находят применение для разделения металлов в процессе аффинажа. [c.427]


Смотреть страницы где упоминается термин Разделение металлов: [c.36]    [c.57]    [c.137]    [c.144]    [c.144]    [c.218]   
Смотреть главы в:

Дитизон и его применение -> Разделение металлов

Ионообменные разделения в аналитической химии -> Разделение металлов

Ионообменные высокомолекулярные соединения -> Разделение металлов


Химический анализ (1966) -- [ c.163 ]

Жидкостные экстракторы (1982) -- [ c.7 , c.9 ]

Ионообменная технология (1959) -- [ c.310 ]

Ионообменная технология (1959) -- [ c.310 ]

Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.179 ]




ПОИСК







© 2024 chem21.info Реклама на сайте