Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основность потенциал

    Степень нспользования тепловых ВЭР составляет в среднем менее 50% потенциала. Оборудование для утилизации тепла отходящих дымовых газов подвергается сильной сероводородной коррозии, так как основное топливо в печах — мазут с содержанием серы 2—2,5%. За рубежом используют регенеративные вращающиеся воздухоподогреватели, способные работать в условиях сероводородной коррозии. Опыт эксплуатации такого воздухоподогревателя в СССР на установке Л-35-11/600 показал, что в результате утилизации тепловых ВЭР можно экономить 6 тыс. т у. т. [c.169]


    Основной недостаток окислительно-восстановительных индикаторов в том, что в зависимости от pH раствора обычно изменяется значение потенциала, при котором наблюдается переход индикатора из одной формы в другую. Изменение окраски некоторых окислительно-восстановительных индикаторов происходит довольно медленно, нередко образуются промежуточные соединения. [c.369]

    В основном -потенциал составляет при этом / 30...40 мВ. [c.150]

    В последние годы положение изменилось. Работами коллектива ВНИИПС было показано, что нейтральные кислородные соединения являются веществами, определяющими успех или неуспех всех способов переработки сланцевой смолы на моторное топливо и другие продукты. Углеводородный материал сланцевой смолы, представляющий собой основной потенциал сланцевого жидкого топлива, как бы окружен кислородным барьером , который ограничивает возможность использования и переработки сланцевой смолы на моторное топливо. Процессы крекинга, ароматизации, обработки хлористым алюминием, серной кислотой и прочие оказались в случае сланцевой смолы совершенно бесперспективными именно из-за наличия в ней нейтральных кислородных соединений. [c.21]

    Потенциал межмолекулярного взаимодействия представляется в виде суммы основного потенциала = У ехр(-аК) и линеаризованного [c.123]

    При редоксиметрическом титровании концентрации участвующих в реакции веществ или ионов все время изменяются. Должен, следовательно, изменяться и окислительно-восстановительный потенциал раствора ( ), подобно тому, как при титровании по методу кислотно-основного титрования все время изменяется pH раствора. Если величины окислительно-восстановительных потенциалов, соответствующие различным моментам титрования, наносить иа график, то получаются кривые титрования, аналогичные кривым, получаемым по методу кислотно-основного титрования. [c.359]

    Вместе с тем проблема инвестирования энергосберегающих мероприятий сама по себе непривычна для отечественной практики. Здесь нет продукта, который можно получить на вложенные инвестиции. Экономия выглядит как отказ от потребления части ресурса, а объекты инвестирования рассредоточены по всей территории. Как правило, отдельно взятое мероприятие у одного потребителя для потенциального инвестора является мелким и не представляет коммерческого интереса. Эффект создает совокупность большого числа мероприятий и потребителей, которые из множества "ручьев" образуют "реку" экономии. Если к сказанному добавить трудное финансовое положение большинства потребителей, у которых сосредоточен основной потенциал энергосбережения, то понятно, что без создания специальных организационных структур, занимающихся вопросами размещения инвестиций на реализацию энергосберегающих проектов и для производства энергосберегающей продукции, сбыта этой продукции, стимулирования потребителей, специальных форм оплаты за энергосберегающее оборудование и услуги и т.п., проблему крупномасштабного энергосбережения не решить. [c.306]


    При сделанных Штерном допущениях емкость диффузной части двойного слоя должна быть значительно больше емкости его плотной части и, как это вытекает из уравнения (12.16), общая емкость определяется в основном гельмгольцевской частью двойного слоя. Определение емкости с использованием модели Штерна приводит поэтому к результатам, согласующимся с опытом как по величинам емкости, так и по характеру ее зависимости от потенциала электрода и концентрации раствора. [c.270]

    В пленочной теории, по которой наступление пассивного состояния связано с поверхностным оксидным слоем, большое внимание уделяется его возникновению и формированию. Основными факторами, определяющими этот процесс, являются потенциал металла, а также концентрации ионов металла и ОН- Потенциал металла должен быть достаточно положительным для того, чтобы обеспечить устойчивое состояние данного оксида. Концентрации металлических и гидроксильных ионов должны быть достаточно велики, чтобы стало возможным образование соответствующих основных солей или гидроксидов, последующие превращения которых приводят к пассивирующим оксидам. Пассивность должна наступать тем легче, чем выше электродная поляризация ири анодном растворении металла и чем ниже скорость удаления ионов металла от поверхности электрода. [c.483]

    Первая иоиытка количественного оформления теории замедленного разряда была предпринята Эрдей-Грузом и Фольмером в 1930 г., хотя некоторые ее положения уже содержались в работах Батлера (1924) и Одюбера (1924). Эрдей-Груз и Фольмер вывели формулу, связывающую потенциал электрода иод током с плотностью тока. Выведенная ими формула является основным уравнением электрохимического перенапряжения и согласуется с эмпирическим уравнением для перенапряжения водорода. Однако теория замедленного разряда в ее первоначальном виде содержала ряд недостаточно обоснованных допущений и не могла удовлетворительно описать всю совокупность опытных данных. Наибольший вклад в теорию замедленного разряда был внесен А. Н. Фрумкиным (1933), который впервые учел влияние строения двойного электрического слоя на кинетику электрохимических процессов. Его идеи во многом определили основное направление развития электрохимической науки и ее современное состояние. [c.345]

    Каждая металлическая поверхность, как правило, электрохимически неоднородна, т. е. отдельные ее участки имеют разный электродный потенциал и в контакте с электролитом становятся соответственно анодом или катодом (рис. 6.1). Основными причинами электрохимической гетерогенности (неоднородности) поверхности металлов могут быть [291]  [c.279]

    Электрохимическая коррозия бронзы протекает с преимущественным переходом в раствор менее благородного компонента сплава — свинца, стационарный потенциал которого равен —0,27В. На рис. 6.7 приведены кривые, характеризующие изменение во времени электродных потенциалов основных элементов, входящих в состав бронзы. Из приведенных данных следует, что потенциал бронзы со временем приближается к потенциалу меди. Это связано с тем, что при контакте бронзы и раствора бензолсульфокислоты с поверхности металла начинает переходить в раствор преимущественно свинец, и поверхность обогащается медью. В реальных условиях в обводненном топливе тоже происходит преимущественное анодное растворение свинца. [c.287]

    У шабазита скорости диффузии относительно велики, а потенциал сорбции небольшой, так что последняя зависит, в основном, от формы и поперечного сечения молекул, а не от их объема. Поэтому, например, на шабазите можно разделить смесь этана и пропана благодаря тому, что этан имеет большие скорости диффузии. Убедительным примером является тот факт, что изобутан с мольным объемом 96 см и диаметром молекул 5,58 А не образует соединений включения [c.84]

    Основные электрохимические явления — это процессы, протекающие на границах различных фаз. Работа электрохимического элемента и его электродвижущая сила — это лишь суммарное проявление совокупности процессов, совершающихся на границах фаз, поэтому изучению молекулярных процессов на границах фаз, являющихся причиной возникновения на этих границах скачков потенциалов и, следовательно э.д.с., в теоретической электрохимии уделяется основное внимание. Однако отдельные скачки потенциала обычно нельзя измерить измеряются лишь электродвижущие силы. [c.519]

    Правдоподобность этого предположения подтверждается тем, что восстановления активности металла можно достигнуть путем катодной поляризации, когда окисная пленка разрушается в основном за счет выделяющегося водорода. Г. В. Акимов показал, что простая механическая очистка пассивного металла под раствором делает металл активным и приводит к сдвигу потенциала в отрицательную сторону. [c.636]

    Вслед за разведчиками недр на месторождения приходят буровики. Они создают основной потенциал отрасли — эксплуатационные и нагнетательные скважины. От мастерства буровиков, их творческого поиска, умения быстро и эффективно внедрять в производство достижения научно-технического прогресса зависят темпы роста добычи черн010 золота . Проходчики недр на протяжении всей истории развития нефтяной промышленности республики были пионерами многих прогрессивных начинаний, шли в авангарде социалистического сорев-нова ния. [c.104]


    Ежедневно перед началом п после проведения серии определений следует проверять титр раствора нитрата серебра по стандартному раствору бромида калия. Непрерывно пропуская водород со скоростью 15 мл1мин, вносят в сосуд для поглощения 1 мл ледяной уксусной кислоты из микробюретки и различные количества (5— 50 мкл) 0,001 М стандартного раствора бромида калия из поршневой бюретки емкостью 100 мкл. Электроды поляризуют, приводят в движение диаграмму самопишущего потенциометра (со скоростью 2,5 см1мин) и начинают титрование, когда установится постоянный основной потенциал. Титруют из поршневой бюретки с приводом от мотора (скорость подачи раствора 30 мкл1мин). Строят калибровочный график в координатах объем титранта — количество бромида количество титранта находят графически, измеряя по оси абсцисс расстояние от начала координат до точки, соответствующей максимуму. График представляет собой прямую, которая обычно не проходит через начало координат. Холостой опыт проводят с ледяной уксусной кислотой. [c.167]

    Рассмотрим, как распределены основные потенциал-образующие ионы Na+ и К+ в наружном сегменте палоч- [c.140]

    Первое, что особенно заметно, это — исчерпание в основном потенциала дальнейшего повышения эффективности за счет традиционных направлений НТП. Газовая промышленность страны имеет неоспоримые заслуга в разработке и реализации в крупных масштабах таких направлений НТП, как повышение диаметров газопроводов и единичных мощностей газоперекачивающих агрегатов, увеличение дебитов скважин, укрупнение установок комплексной подготовки газа (УКПГ), широкое использование батарейно-кустового расположения скважин и т.д. Однако особенность современной ситуации состоит в том, что эта совокупность традиционных направлений НТП, ориентированная по существу на концентрацию мощностей и рост производительности в добыче и транспорте газа, а также на увеличение параметров рабочих процессов, вышла в итоге на свои пределы. Мы получили наивысшие в мире уровни концентрации производства и исчерпали тем самым, в основном, возможность дальнейшего повышения эффективности в этом направлении. [c.207]

    При электрохимической реакции прямой контакт между реагирующими частицами заменяется их контактом с соответствую-и им металлом. Прн этом реакция и связанные с ней энергетические изменения остаются теми же (независимо от того, протекает она но химическому или же электрохимическому нути), но кинетические условия могут быт з различными. Энергия активации при электрохимическом механизме благодаря каталитическим свойствам металлов может быть иной, чем при гомогенном химическом механизме, кроме того, оиа зависит от потенциала. В электрохимических реакциях обязательно участвуют электроны, а часто и другие заряженные частицы — катионы и анионы, что составляет одну нз и. основных характерных особенностей. Энергия таких частиц, естественно, является функцией электрического поля, создаваемого на границе электронопроводяи1,ее тело — электролит. [c.11]

    Для характеристики термодинамической устойчивостн электрохимических систем в водных средах весьма удобны диаграммы потенциал— отрицательный логарифм активности водородных ионов (диаграммы ё — pH), получив1иие широкое применение главным образом благодаря работам Пурбе и его школы. Для построения таких диаграмм, часто называемых диаграммами Пурбе, необходимо располагать сведениями об основных реакциях (окисления и восстановления, комплексообразования и осаждения), возможных в данной системе, об их количественных характеристиках (изобарно-изотермических потенциалах, произведениях растворимости и т. д.) и передать их графически в координатах S — pH. Для водных сред, естественно, наиболее важной диаграммой — pH следует считать диаграмму электрохимического равновесия воды. [c.186]

    Разложение э.д.с. на отдельные скачки потенциала дает дополнительные сведения о природе электрохимических систем. В то же время основное уравнение (97), передающее связь э.д.с. со скачками потенцпала, нельзя считать удовлетворительным. Реально измеряемая величина э.д.с. выражается здесь как сумма гальвани-потенциалов, т. е. потенциалов, отвечающих двух точкам, находя- [c.32]

    Второй метод нахождения фс был разработан в 1907 г. Гендер-соном. Сохранив основные допущения Планка, Геидерсон считал, что в переходном слое состав плавно изменяется от раствора 1 до раствора П, В любой точке раствора состав его можно поэтому выразить как сумму (1—х)1 + хП, где (1—А )—доля состава раствора I, а А — доля состава раствора II. В направлении слева направо от точки 1 до точки 2 (см. рис. 6,2) а изменяется от нуля до единицы. Этой модели переходного слоя отвечает следующее урав-ление диффузионного потенциала  [c.151]

    Однако реализовать кислородный электрод, поведение которого описывалось бы выведенными уравнениями, иа практике весьма трудно. Это обусловлено особенностями, отличающими все газовые электроды, и, кроме того, способностью кислорода (особенно во влажной атмосфере) окислять металлы. На основную электродную реакцию накладывается поэтому реакция, отвечающая метал-локсидному электроду второго рода. Даже на платине могут образовываться оксидные пленки, и поведение кислородного электрода не будет отвечать теоретическим ургвнениям эти отклонения проявляются, папример, в характере изменения потенциала с давлением кислорода. Кроме того, имеются основання полагать, что реакция иа кислородном электроде да ке в отсутствие поверхностных оксидов отличается от той, на которой основан вывод уравнения для потенциала кислородного электрода. По данным Берла (1943), подтвержденным и другими исследователями, часть кислорода восстанавливается на электроде не до воды, а до ионов пероксида водорода  [c.167]

    Однако следует иметь в виду, что на основной электродный процесс накладываются побочные реакции с участием хлора, приводящие к образованию продуктов е О гидролиза — гипохлоритов и хлоратов. Высокое положительное значение стандартного потенциала хлорного электрода (+1,358 Ei при 25°С) затрудняет подбор достаточно устойчивого, не реагирующего с хлором материала электрода. Тем пе менее при соблрздении определенных мер ряду авторов удалось получить опытные значения потенциалов хлорного электрода, совпадающие с теоретической величиной. [c.168]

    Осмотическая теория э.д.с. Нернста основана на классической теории электролитической диссоциации, поэтому она сохраняет основной недостаток теории Аррениуса — отождествление свойств растворов электролитов со свойствами идеальных систем. Развитие теории э.д.с. и электродного потсчщиала повторило ход развития теории растворов электролитов. Так, введение понятий о коэффи-цисн1е активности (как о величине, связанной с межионным взаимодействием) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста качественно верную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Д. И. Менделеев, и в особенности учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков) были важными вехами в развитии теории раство зов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродо и раствором. [c.220]

    Уравнения (10.30) и (10.32) следуе рассматривать как математическое выражение основных положений гидратациониой (сольватационной) теории электродвижущих сил и электродных иотенциа-лов. Э.д.с. и стандартный электродный потенциал иредставлены здесь в виде суммы двух слагаемых. Первое из них определяется свойствами электродов, второе — свойствами потенциалопределяю-щих ионов и природой растворителя. [c.225]

    Основную причину изменения напряжения на электрохимической системе при подаче (или отборе) тока следует искать поэтому ие в омических потерях, а в иомепеиии электродных потенциалов с силой (или плотностью) тока. При наложении тока потенциал каждого нз двух электродов, входящих в электрохимическую систему, изменяется в направлеии]г, которое увеличивает напряжение иа ванне и снижает его на элементе. Суммарное изменение электродных иотеициалов под то1<ом называется э.д.с. поляризации Сп. Если наряду с омическим ладением напряжения учитывать также и э.д.с. поляризации, то можно написать уравнения для напряжения иа ванне и на элементе  [c.288]

    Для перегонки легких нефтей с высоким содержанием рас — ТВС римых газов (1,5 —2,2 %) и бензиновых фракций (до 20—30 %) и фракций до 350 °С (50 — 60 %) целесообразно применять атмосферную перегонку двухкратного испарения, то есть установки с предварительной отбензинивающей колонной и сложной ректификационной колонной с боковыми отпарными секциями для разделения частично отбензиненной нефти на топливные фракции и мазут. Двухколонные установки атмосферной перегонки нефти получили в отечественной нефтепереработке наибольшее распространение. Они обладают достаточной технологической гибкостью, универсальностью и способностью перерабатывать нефти различного фрак — ционного состава, так как первая колонна, в которой отбирается 50 — 60 % бензина от потенциала, выполняет функции стабилизатора, сг/аживает колебания в фракционном составе нефти и обеспечивает стабильную работу основной ректификационной колонны. Применение отбензинивающей колонны позволяет также снизить данление на сырьевом насосе, предохранить частично сложную Ko.voHHy от коррозии, разгрузить печь от легких фракций, тем самым не жолько уменьшить требуемую тепловую ее мощность. [c.183]

    До снх пор предполагалось, что отклонение потенциала электрода под током от соответствующего равновесного значения вызвано ка-кой-либо одной причиной и электродная поляризация представляет собой вполне определенный вид перенапряжения. Для реальных условий правильнее говорить о преобладании одного вида перенапряжения. Другие виды перенапряжения накладываются в той или иной степенп на основное перенапряжение. Чаще всего на электрохимическое или на фазовое перенапряжение накладывается концентрационная поляризация. В этом случае сдвиг потенциала под током от равновесного значения будет представлять собой сумму двух или нескольких видов перенапряжения, причем в условиях концентрационных ограничений изменяется и сама активационная [c.375]

    При окислительно-восстановительных процессах диффузионное неренапряжение обычно велико и часто составляет значительную, а иногда даже и основную долю всего смещения потенциала электрода под током. Поскольку роль концентрационного перенапряжения в редокси-процесоах уже обсуждалась ранее, здесь рассматриваются только химическое перенапряжение и активационная поляризация. При этом предполагается, что диффузионное перенапряжение или учтено, или устранено. [c.429]

    Появление сольватированных электронов переносит зону электрохимической реакции восстановления с границы раздела электрод — электролит в раствор, т. е. превращает ее из поверхностной, гетерогенной, в объемную, гомогенную, реакцию, с катодно генерируемым восстанавливающим агентом. В связи с этой основной особенностью нового механизма восстановления роль транспортных ограничений становится несущественной реакция теперь не локализована в определенном месте, а распределена в объеме подвижность электронов выше, чем большинства других частиц кроме того, появление электронов в растворителе приводит к возникновению градиента плотности, а следовательно, к конвективному перемешиванию объема раствора, примыкающего к катоду. Эта особенность оказывается наиболее существенной в случае электровосстановления труднорастворимых органических соединений, которые при обычных условиях из-за крайне медленной доставки восстанавливаются с ничтожными выходами. В водных средах для ускорения подобных процессов применяются медиаторы потенциала — ионные редокси-пары, которые переносят мектроны от катода к восстанавливаемым частицам или от окисляющихся частнц к аноду, а затем сами восстанавливаются или окисляются на соответствующих электродах. Эффективность восстановления сольватированными электронами должна быть существенно выше, чем при применении медиаторов по уже указанным ранее причинам, а также потому, что ионам медиатора приходится проходить двойной путь — до реакции с частицей и после иее. Действительно, найдено, что токи генерации сольватиро-вапных электронов больше чем на три порядка превышают токи диффузии органических соединений к катоду. [c.444]

    В частности, предполагаются известными следующие четыре основных выражения для полных дифференциалов внутренней )иергин U, ii3o6apHoro потенциала Ф, свободной энергип F и энтальпии Н однокомнонентной системы [14]  [c.21]

    Разбавление сырья растворителем сказывается на всех основных показателях процесса депарафинизации скорости фильтрации или эффективности центрифугирования, отборе депарафипи-рованного масла от потенциала, четкости разделения компонентов, температурном эффекте депарафинизации, требуемой температуре депарафинизации и других показателях, поэтому оптимальное разбавление сырья растворителем необходимо выбирать с учетом его влияния на все отмеченные показатели. [c.100]

    Наличие в молекуле внутреннего вращения, в особенности заторможенного вращения, требует существенного изменения в этом выражении. Соответствующая теория успешно разработана Питцероми др. [4, 81. Одна из основных трудностей в случае заторможенного вращения состоит в том, что в окончательное выражение входит значение тормозящего потенциала, а до настоящего времени отсутствует прямой путь для определения этой величины. В действительности имеется только один способ для определения величины потенциального барьера, состоящий в том, что, предполагая свободное вращение, вычисляют значения каких-либо термодинамических функций для ряда температур, определяют эти величины калориметрически, а затем подбирают такое значение для потенциального барьера, при котором будет достигнуто согласие между вычисленными и измеренными экспериментально величинами. [c.311]

    Масс-спектроскопия основана на разделении заряженных частиц переменной массы способами электрического и магнитного полей. Основными частями масс-спектрометра являются ионизационная камера (ионы в ней образуются при электронной бомбардировке газообразных веществ), электрический потенциал для того, чтобы ускорить движение ионов, и магнитное поле, которое индуцирует угловое отклонение. Если изменить силу либо электрического, либо магнитного полей, то ионы могут быть соответственно разделены и собраны на основе отношения массы к заряду. Углеводороды ионизируют для того, чтобы получить определенные обрывы цепей. Так как такие обрывы характерны для углеводородного ряда, то поэтому возможны типовые анализы узкокипящих фракций в газообразных нефтепродуктах, смазочных маслах и парафинах однако [219—220] могут встречаться и смешанные структуры [222]. Необходимо использовать стандарты для калибровки спектрометра. [c.191]

    Использование термодинамических данных. Основным критерием оценки возможности осуществления какой-либо реакции с точки зрения термодинамики является изменение свободной энергии (изобарного потенциала) AG или стандартной свободной энергии AG298 к изучается или зависимость ее от температуры ДО = ф(Т ), или определяется значение температуры, при которой AG = О, т. е. когда реакция может протекать с одинаковой легкостью в обоих направлениях. [c.12]

    При дальнейшем повышении градиента иотенциала (см. рис. X, 1) сила тока возрастает сначала относительно медленно, а нри определенном значении градиента потенциала, равном В, резко увеличивается скачком до очень высоких значений, определяемых в основном внешним соиротпвлением цепи и мощностью источника тока. Одновременно появляется яркое свечение газа. Это явление, происходящее, напрпмер, в воздухе при атмосферном давлении н зиачеиии градиента потенциала порядка 3- КИ в см, называется зажиганием газового разряда, или пробоем газового промежутка. [c.239]


Смотреть страницы где упоминается термин Основность потенциал: [c.317]    [c.88]    [c.122]    [c.138]    [c.367]    [c.7]    [c.374]    [c.471]    [c.60]    [c.162]    [c.135]    [c.114]    [c.297]   
Теории кислот и оснований (1949) -- [ c.154 ]




ПОИСК







© 2025 chem21.info Реклама на сайте