Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловой эффект олефинов

    Теоретические основы. Процесс протекает с выделением тепла. Расчетный тепловой эффект реакции алкилирования изобутана составляет 125—135 кДж/моль прореагировавших олефинов фактический тепловой эффект (с учетом побочных реакций) равен 85—90 кДж/моль. В условиях процесса имеют место реакции алкилирования изобутана олефинами, олигомеризации олефинов, расщепления продуктов олигомеризации, перераспределения водорода, образования и разложения алкилсульфатов. В результате этих реакций, протекающих большей частью по карбкатионному механизму, в продуктах образуется пять основных групп углеводородов триметилпентаны, диметилгексаны, легкая фракция (С4—Се), тяжелая фракция (Сд и выше), растворенные в кислоте высокомолекулярные углеводороды (полимеры). Названные углеводороды получаются нз общих для каждой группы одного или нескольких промежуточных веществ. Установлено, что в продуктах алкилирования содержится 17 изопара-финовых углеводородов С5—С и 18—20 изопарафиновых углеводородов Сд и выше. Наиболее важные химические стадии процесса алкилирования изобутана бутиленами следующие. [c.167]


    При расчете на одну молекулу присоединяющегося водорода тепловой эффект оказывается наиболее высоким для соединений с тройной углерод-углеродной связью. Для ароматических систем он меньше, чем для олефинов, что обусловлено нарушением устойчивой системы ароматических связей. При гидрировании карбонильных групп тепловой эффект ниже, чем для двойной углерод-углеродной связи. При этом гидрирование альдегидов (реакция 4) более экзотермично, чем гидрирование кетонов (реакция 5). Близкий к ним тепловой эффект на одну молекулу присоединившегося водорода имеет гидрирование нитрилов (реакция 6). Очевидно, что эти же закономерности, но касающиеся поглощения тепла, соблюдаются для обратных процессов дегидрирования. Из двух реакций гидрирования с выделением воды (реакции 7 и 8) одна имеет самый низкий тепловой эффект, а вторая — самый высокий из всех приведенных процессов гидрирования. Деструктивное гидрирование по углерод-углеродной связи (реакция 9) сопровождается сравнительно небольшим выделением тепла. [c.460]

    Тепловой эффект гидрогенизации бутенов и гексенов соответственно составляет 570 и 350 ккал на 1 кг и для бензола и нафталина (полная гидрогенизация) соответственно 660 и 550 ккал. Высокомолекулярные производные бензола и нафталина и высокомолекулярные олефины, конечно, имеют более низкие значения теплового эффекта. Следует помнить, что гидрогенизация ароматических углеводородов в промышленных процессах проходит лишь частично и, кроме того, она сопровождается реакциями разложения, поглощающими тепло. Согласно вычислениям, основанным на действительных результатах [c.219]

    Реакция алкилирования изопарафинов олефинами экзотермична. При ее протекании выделяется значительное количество тепла. Это учитывают при технологическом оформлении процесса и реакционные устройства установок алкилирования обязательно снабжают приспособлениями для отвода выделяющегося при реакции тепла. Пер вые данные о теплоте реакции алкилирования опубликованы Бирчем и Дунстаном с соавторами [3]. Тепловой эффект был определен ими экспериментальнс (с точностью 10% при постоянной концентрации свежей серной кислоты — 97,9%) для реакции алкилирования изобутана различньши олефинами изо бутиленом, диизобутиленом и др. Полученные разультаты приведены в табл. 9. [c.42]

    Наличие тепловых эффектов требует соответствующего конструктивного оформления реактора. При осуществлении термического или каталитического крекинга, риформинга и других процессов, сопровождающихся затратой тепла на реакцию, необходимо вносить тепло в реакционную зону. Это достигается либо подводом тепла через стенку труб нагревательно-реакционного змеевика печи, либо некоторым перегревом исходного сырья, либо применением твердого или газообразного теплоносителя. В процессах, протекающих с выделением тепла, для поддержания постоянной температуры необходим отвод тепла с этой целью применяют прямой ввод охлаждающего агента в реактор или создают там режим, способствующий теплоотводу (через теплоотводящую поверхность). Например, в реакторы гидрокрекинга во избежание подъема температуры вводят холодный водород, а при алкилиро-вании изобутана газообразными олефинами выделяющееся тепло отводят путем испарения части изобутана, находящегося в системе. Конкретные схемы реакционных устройств рассмотрены при описании соответствующих процессов. [c.21]


    Алкилирование протекает с положительным тепловым эффектом (теплота реакции 1172 кДж), и для отвода тепла реакции применяют хладагенты - аммиак или пропаны. Температурные пределы промышленного сернокислотного алкилирования колеблются от О до 10 °С. В случае остановки холодильного компрессора температура в реакторе резко повышается, что вызывает усиление полимеризации олефинов. В этом случае необходимо прекратить подачу олефинов, продолжать подачу и циркуляцию изобутана, поддерживать требуемую концентрацию кислоты путем добавления свежей кислоты и вывода из системы максимально возможного [c.79]

    Кокс — неизбежный продукт каталитического крекинга. Аккумулирование кокса на катализаторе приводит к деактивации последнего при этом образуется водород, идущий на насыщение олефинов. Оба этих эффекта являются нежелательными, и потому значительный интерес представляет установление источников коксообразования и скорости процесса. Имеется один положительный аспект, связанный с коксообразованием при сгорании кокса в регенераторе выделяется тепло, используемое затем в промышленных условиях на стадии крекинга. [c.119]

    Газофазная реакция прямой гидратации олефинов обратима и идет с выделением тепла. Тепловой эффект зависит от строения исходных олефинов и их молекулярного веса  [c.16]

    Процесс является экзотермическим тепловой эффект составляет примерно 117 кДж/моль и мало меняется при переходе ог одного олефина к другому. Выделяющееся тепло отводят во внутренних змеевиках, выносных холодильниках или за счет ввода в реактор холодных рециркулирующих потоков. Кратность циркуляции синтез-газа равна (2+3) 1. Олефины, используемые в оксосинтезе, должны быть тщательно очищены от диенов, ацетиленовых углеводородов и кислорода. Ацетиленовые углеводороды и диены образуют с карбонилами кобальта неактивные комплексы, а кислород разлагает карбонилы кобальта с образованием СоО. [c.172]

    Тепло, выделяемое при синтезе насыщенных углеводородов Сд— по уравнению (1А) в интервале температур 200—300 , находится в пределах 42—37 ккал1молъ на углеродный аюм, или 2,8—2,6 ккад/г. Прп синтезе насыщенных углеводородов согласно уравнению (1В) соответствующие значения составляют 51—46 ккал моль на углеродный атом, или 3,4—3,3 ккал г. При получении метана и этана выделяется тепла на 20% больше, чем при синтезе пропана. Тепловые эффекты реакций синтеза олефинов [уравнения (2А) и (2В)] и спиртов уравнение (ЗА) и (ЗВ)] почти одинаковый составляют для олефинов (или спиртов) j— ga 40—47 ккал моль на углеродный атом, или 2,7—3,3 ккал г. [c.520]

    При конструировании реактора необходимо предусмотреть не только хорошее контактирование олефинов с синтез-газом, но и эффективный отвод тепла для точного регулирования температуры. Это совершенно очевидно из-за высокой экзотермичности реакции ( 30 ООО ккiIл/кг-J ioл для этилена тепловой эффект реакции еще больше). Правда, оксореакция менее чувствительна к колебаниям температуры, чем родственная ей реакция Фишера-Тропша. Конструкция реактора зависит также от формы применяемого катализатора. [c.272]

    Зависимость теплового эффекта и изменения свободной энергии реакций от температуры показана на рис. 2. Расход тепла на дегидрирование пропана, бутана и пентана до олефина составляет примерно 30 ккал1моль, для этана — 33 ккал/моль и иетаяя — 48 ккал/моль. Тепловые эффекты сравнительно мало изменяются с повышением температуры, и для углеводородов этан — пентан наблюдаются сравнительно небольшие максимумы в пределах температур от 900 до 1100° К. Изменения свободной энергии с повышением температуры существенно уменьшаются и выражаются параллельными линиями с пересечением нулевого значения при температурах 1580, 1060, 920 и 950° К. В табл. 2 приведены эмпирические формулы зависимости теплового эффекта и изменения свободной энергии от температуры. Наибольшее [c.169]

    Процесс полимеризации олефинов сопровождается выделением значительного количества тепла. Тепловой эффект полимеризации этилена, рассчитанный по энергиям связей с учетом теплоты кристаллизации образующегося полиэтилена, составляет 100— 106 кДж/моль [823]. Стандартная теплота образования полиэтилена из этилена АЯмз =—108,5 кДж/моль [824]. Калориметрическим методом найдено, что теплота полимеризации этилена на системе Т1С1з (5о=5,75 м /г)—А1(СНз)з при 25 °С составляет [c.223]

    Газофазная реакция прямой гидратации олефинов обратима и идет с выделением тепла. Тепловой эффект зависит от строения исходных олефинов и их молекулярной массы и составляет для СН3СН2ОН —45,6, для СНзСН (ОН) СНз —51,4 кДж/моль. Поскольку реакция идет с выделением тепла и уменьшением объема, ей благоприятствуют пониженные температуры и повышенные давления. Константы равновесия для указанных выше реакций соответственно равны  [c.364]

    Добавки веществ основного (амины) и кислотного (соляная кислота) характера приводили к ускорению реакции, что заставляло предполагать ионный механизм полимеризации жидкого формальдегида. Известно, что инициаторы свободнорадикального типа не вызывают полимеризации формальдегида, но разрушают его. Это совпадает с теоретическими представлениями о реакционной способности карбонильной группы в альдегидах и кетонах. Средние значения энергии диссоциации С=С- и С = 0-связей, а также С—С- и С—0-связей достаточно близки. Вместе с тем известно, что в отличие от винильной связи в молекулах олефинов карбонильная группа сильно поляризована. При атаке молекулы, имеющей ненасыщенные связи, свободным радикалом конкурирующими реакциями являются реакции замещения и присоединения к двойной связи. Реакции замещения связаны со сравнительно большими стерическими затруднениями (по сравнению с реакциями присоединения). В случае олефинов скорость реакции присоединения выше за счет очень низких значений энергии активации (2—4 ккалЫолъ). Соответственно реакции замещения, имеющие более высокую энергию активации, начинают доминировать только при повышенных температурах. Присоединение свободного радикаля к С = 0-связи происходит значительно труднее (энергия активации 7—8 ккал/моль). Тепловой эффект этой реакции составляет всего 3—10 ккал/моль. В то же время отрыв атома водорода от молекулы формальдегида и присоединение его к радикалу сопровождаются выделением большого количества тепла (38 ккал/моль) и соответственно энергия активации этой реакции равна всего 0,5 ккал/.иоль. [c.40]



Смотреть страницы где упоминается термин Тепловой эффект олефинов: [c.67]    [c.96]    [c.443]   
Синтез углеводородов из окиси углерода и водорода (1954) -- [ c.16 , c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Эффект тепловой

Эффект тепловой, Тепловой эффект



© 2025 chem21.info Реклама на сайте