Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация тепловые эффекты

    Гидрирование ацетиленовых и диеновых углеводородов в пропан-пропиленовой и бутан-бутиленовой фракции пиролиза. Во избежание термической полимеризации гидрирование сжиженных газов пиролиза необходимо осуществлять при возможно более низкой температуре (не более 50 °С), причем повышение ее должно происходить только путем адиабатического разогрева (за счет теплового эффекта реакции). Чтобы не допустить чрезмерного разогрева, в ряде случаев следует использовать два последовательных реактора колонного типа либо применить трубчатые реакторы с внешним теплоносителем или возвратом части про-гидрированного и охлажденного продукта на вход реактора. Поскольку фракции пиролиза Сз и С4 получаются в жидком виде, целесообразно проводить гидрирование также в жидкой фазе. Ввиду высокой реакционной способности гидрируемых примесей большого соотношения водород/сырье не требуется, поэтому, как правило, циркуляция водородсодержащего газа не применяется. В реакторы подается стехиометрическое количество водорода с 10—30% избытком. К катализаторам предъявляются требования высокой селективности (гидрироваться должны только высоконенасыщенные углеводороды) и инертности по отношению к реакции полимеризации. Наиболее эффективны палладиевые катализаторы, нанесенные на окись алюминия или носители на основе окиси алюминия. [c.21]


    Полимеризация. В термодинамическом отношении процессы полимеризации мономеров характеризуются тем, что сопровождаются выделением теплоты, но уменьшением энтропии. Таким образом, они могут протекать самопроизвольно под действием энергетического фактора при противодействии энтропийного 95). Так как влияние энтропийного фактора относительно возрастает с повышением температуры, то при достаточно высоких температурах (при атмосферном давлении) вместо образования полимера становится термодинамически возможным обратный процесс деструкции (разложения). Эта температура в общем тем ниже, чем меньше теплота полимеризации, с поправкой на различие в значениях энтропии полимеризации. Тепловые эффекты процессов полимеризации для некоторых полимеров приведены в табл. 63 [c.556]

    По тепловому эффекту различают реакции эндотермические, идущие с поглощением тепла, и экзотермические, протекающие с выделением тепла. Так, реакции крекинга, пиролиза, каталитического риформинга являются эндотермическими, а гидрогенизации, алкилирования, полимеризации и др. — экзотермическими. Это требует и соответствующего конструктивного оформления аппарата, чтобы обеспечить подвод тепла в случае эндотермической реакции и отвод тепла в случае экзотермической реакции. [c.372]

    Как уже отмечалось, тепловой эффект реакции полимеризации составляет 96,37 кДж/моль (23 ккал/моль). При недостаточном теплоотводе температура процесса очень быстро может повыситься до опасных пределов. Однако отвод тепла реакции через теплообменную поверхность реактора невозможен, так как на его стенках образуются полимерные отложения. Поэтому прибегают к циркуляции этилена (парогазовой смеси этилена с растворителем). Тепло при этом отводится за счет испарения растворителя и нагрева рециркулирующей парогазовой смеси (ПГС). [c.114]

    КИМ образом, они могут протекать самопроизвольно под действием энергетического фактора прн противодействии энтропийного( 95). Так как влияние энтропийного фактора относительно возрастает с повышением температуры, то при достаточно высоких температурах (при атмосферном давлении) вместо образования полимера становится термодинамически возможным обратный процесс деструкции (разложения). Эта температура в общем тем ниже, чем меньше теплота полимеризации, с поправкой на различие в значениях энтропии полимеризации. Тепловые эффекты процессов полимеризации для некоторых полимеров приведены в табл, 65. [c.561]


    Выбор типа реактора. Выбор конструктивного типа полимеризатора зависи г от производительности, времени полимеризации, теплового эффекта реакции, реологических и теплофизических свойств среды, допустимой разности температур в реакторе, требования к качеству продукта. Кроме того, известно, что пои условном коэффициенте скорости отвода теплоты /Сус > [c.197]

    Так как влияние энтропийного фактора относительно возрастает с повышением температуры, то при достаточно высоких температурах (при атмосферном давлении) вместо образования полимера становится термодинамически возможным обратный процесс деструкции (разложения). Эта температура в общем тем ниже, чем меньше теплота полимеризации, с поправкой на различие в значениях энтропии полимеризации. Тепловые эффекты процессов полимеризации для некоторых полимеров приведены в табл. 65. [c.553]

    Энтальпия напряженного цикла выше энтальпии линейного полимера. Поэтому тепловой эффект реакции полимеризации напряженного цикла положительный и АН меньше нуля. Таким образом, напряженность цикла способствует реакции полимеризации. Тепловой эффект реакции и изменение энтальпии определяются величиной напряженности цикла. С другой стороны, тепловой эффект реакции полимеризации может служить мерой напряженности цикла. [c.189]

    Процесс является экзотермическим и термодинамически неустойчивым. Тепловой эффект реакции полимеризации составляет 96,37 кДж/моль (23 ккал/моль) превращенного этилена. Поэтому при недостаточном отводе тепла может произойти взрывчатое разложение этилена. [c.104]

    Выбор конструктивного типа полимеризатора будет зависеть от производительности, времени полимеризации, теплового эффекта реакции, реологических и теплофизических свойств среды, допустимой разности температур в реакторе, требования к качеству продукта. Кроме того, известно, что при условном коэффициенте скорости отвода теплоты /Сус > 900 Вт(м -К) для нормального проведения процесса необходимо иметь реактор с развитой поверхностью теплообмена. [c.238]

    При полимеризации обычно выделяется тепло, причем величина теплового эффекта зависит от природы мономера. С увеличением теплового эффекта понижается значение термодинамического потенциала, что способствует реакции полимеризации. Тепловой эффект при полимеризации циклических мономеров зависит от напряженности цикла, в некоторых случаях он может снизиться до нуля. [c.89]

    Большинство упоминавшихся выше реакций— сжигание, гидрирование, гидролиз и галоге-нирование — заканчиваются за короткое время. Наоборот, многие реакции полимеризации, тепловые эффекты которых были измерены, протекают значительно медленнее. Хотя калориметр с-сосудом Дьюара весьма прост, он довольно успешно использовался для измерения теплот полимеризации. [c.38]

    Тепловой эффект полимеризации 68 700/104 = 661 кДж/кг. Приход теплоты (кДж)  [c.61]

    Тепловые эффекты указанных реакций различаются по величине и знаку. В большинстве случаев реакции эндотермичны, но некоторые (перераспределение водорода, полимеризация, циклизация, конденсация и т. д.) протекают с экзотермическим эффектом. Интенсивность протекания тех или других реакций определяет результирующий эндотермический тепловой эффект крекинга, который может изменяться от 100 до 400 кДж/кг сырья. [c.106]

    Реакции конденсации и поликонденсации многих химических вешеств сопровождаются значительным тепловым эффектом. Процессы поликонденсации по термодинамическим характеристикам к свойствам получающихся высокомолекулярных продуктов сходны с процессами полимеризации. Поэтому аварии, возникающие пра проведении процессов конденсации и поликонденсации, имеют аналогичный характер. [c.345]

    При п > 3 тепловой эффект полимеризации близок к нулю [10, 39] и, следовательно, основной движущей силой процесса является изменение энтропии системы. [c.472]

    Стирол легко полимеризуется с выделением тепла, особенно при нагревании, образуя метастирол — стекловидную твердую массу, которая представляет твердый раствор полистирола в стироле. Тепловой эффект полимеризации стирола составляет 74,5 кДж/моль. Во избежание самопроизвольной полимеризации стирол хранится и транспортируется в присутствии ингибиторов — гидрохинона, п-трет-бутил-пирокатехина, диоксим-л-хинона и др., которые перед использованием удаляются перегонкой продукта в вакууме или промывкой раствором гидроксида натрия. [c.336]

    Тепловые эффекты процессов полимеризации мономеров А// ккал моль) [c.561]

    Та блица 6.1. Тепловые эффекты и изменение стандартной энергии Гиббса прн реакциях полимеризации пропилена и бутенов [c.189]

    Полимеризация бутадиена с катализатором в впде металлоорганического комплекса протекает в жидкой гомогенной фазе в растворе (в качестве растворителя используется бензин). Эта реакция — первого порядка со значительным тепловым эффектом (АЯ = —18,3 ккал моль). [c.129]


    При термическом крекинге реакции распада углеводородов протекают с затратой тепла, а реакции соединения (например, полимеризация) протекают с выделением тепла. Так как в этом процессе преимущественно идут реакции расщепления, то суммарный тепловой эффект его отрицателен. Поэтому для осуществления крекинг-процесса необходимо затратить тепло. Для легкого крекинга мазута затрачивается 350 ккал тепла на 1 кг образующегося бензина, для глубокого крекинга соляровой фракции — 300 ккал на 1 кг бензина. [c.236]

    Бутадиен легко полимеризуется, причем полимеризация инициируется пероксидами, образующимися при контакте бутадиена с воздухом. Тепловой эффект полимеризации зависит от температуры и составляет от 72, 8 до 125,6 кДж/моль. Вследствие этого бутадиен хранится в присутствии ингибиторов, например, п-оксидифениламина или га-трет-бутилпирокатехина, которые удаляются промывкой гидроксидом натрия перед полимеризацией. [c.321]

    При полимеризации непредельных углеводородов рвется одна двойная связь (606 кДж/моль, или 145,5 ккал/моль) и образуются две простые связи С—С (350-2 кДж/моль, или 84-2 ккал/моль). Разность энергий этих связей определяет значение теплового эффекта реакции  [c.102]

    Процесс полимеризации диолефинов в присутствии металлического натрия разделяется на два периода, различных по тепловому эффекту. Первый (индукционный) период связан с возникновением [c.229]

    В учебном пособии излагаются методы синтеза, модификации и исследования высокомолекулярных соединений. Впервые приводятся описания лабораторных работ на основе методов радиационного инициирования полимеризации, синтеза высокомолекулярных антиоксидантов с оценкой их эффективности и стабильности эластомеров, специфического галогенирования полимеров, циклизации макромолекул, определения молекулярных масс мономеров, олигомеров и полимеров путем измерения теплового эффекта конденсации а др. [c.2]

    Определите критическую температуру полимеризации (Гкр) некоторого мономера, если тепловой эффект его полимеризации составляет Ы кДж/моль, а энтропия полимеризации— 100 Дж-моль- -град  [c.202]

    Процесс полимеризации сопровождается уменьшением энтропии системы энтропийный член при температуре 27°С составляет 34—-42 кДж/моль (7,5—10 ккал/моль). Вследствие этого процесс полимеризации возможен только при тепловом эффекте реакции, превышающем 34—42 кДж/моль (7,5—10 ккал/моль). [c.102]

    И. М. Баркалов. Работа была поставлена именно для получения этих прямых доказательств. Проводилось измерение теплоты, выделяющейся в момент размораживания. Если бы полимеризация проходила в точке фазового перехода или в точке плавления, то при этом наблюдалось бы дополнительное выделение тепла за счет полимеризации. Тепловой эффект при наблюдаемом проценте полимеризации должен был бы увеличиться на 150% по отнощению к теплоте фазового перехода (точность нашей методики 10%)- Мы не наблюдали дополнительного тепловыделения. Было проведено непосредственное измерение теплоты, выделяющейся в ходе облучения в случае акрилонитрила. Эти измерения проводились на более чувстви- [c.271]

    Реакция экзотермична. Тепловой эффект составляет 71 8 кДж/моль полимеризовавшегося Элеф ина. Равновесная степень полимеризации возрастает с увеличением давления и снижением температуры. [c.266]

    Вдоль всех поверхности теплообмена обеспечивается интенсивный съем тепла при помощп горячего парового конденсата, циркулирующего через охлаждающие рубашки змеевика. Проведение процесса в змеевике, составленном из труб небольшого диаметра, обеспечивает большую удельную поверхность охлаждения. Для полимеризации этилена это особенно важно, поскольку тепловой эффект реакции может достигать 1000 ккал кг п своевременный и быстрый отвод тепла является решающим фактором для данного процесса. Часть избыточного тепла отводится также рециркулирующим этиленом. [c.277]

    В термических, а также каталитических процессах нефтепе — реработки одновременно и совместно протекают как эндотермические реакции крекинга (распад, дегидрирование, деалкилирова— ние, деполимеризация, дегидроциклизация), так и экзотермические реакции синтеза (гидрирование, алкилирование, полимеризация, конденсация) и частично реакции изомеризации с малым тепловым эффектом. Об этом свидетельствует то обстоятельство, что в про — дуктах термолиза (и катализа) нефтяного сырья всегда содержатся углеводороды от низкомолекулярных до самых высокомолекуляр — ных от водорода и сухих газов до смолы пиролиза, крекинг — остатка и кокса или дисперсного углерода (сажи). В зависимости от температуры, давления процесса, химического состава и молекулярной массы сырья возможен термолиз с преобладанием или реакций крекинга, как, например, при газофазном пиролизе низкомолеку — лярных углеводородов, или реакций синтеза как в жидкофазном процессе коксования тяжелых нефтяных остатков. Часто термические и каталитические процессы в нефте— и газопереработке проводят с подавлением нежелательных реакций, осложняющих нормальное и длительное функционирование технологического процесса. Так, гидрогенизационные процессы проводят в среде избытка водорода с целью подавления реакций коксообразования. [c.9]

    В табл. 6.1 приведены данные о тепловом эффекте и изменении энергии Гиббса при реакциях полимеризации пропилена и бутенов. Тепловые эффекты полимеризации составляют 8 кДж/моль (17 2 ккал/моль) полимеризовавшегося олефина. При температурах до 500—550 К в стандартных условиях полимеризация идет с уменьшением свободной энергии Гиббса. Энергия Гиббса образования сооответствующих изоолефинов на 2—19 кДж/моль (0,5— 4,5 ккал/моль) ниже, чем а-олефинов нормального строения, и сни- [c.189]

    Сухая перегонка топлива происходит при нагревании топлива без доступа воздуха. В результате могут протекать а) физические процессы, например разделение жидких топлив на фракции по температурам кипения и др. б) химические процес сы— глубокие химические деструктивные превращения компонен тов топлива с получением ряда продуктов. Роль и характер отдель ных процессов при пиролизе различных видов топлив неодииако вы. В большинстве случаев их суммарный тепловой эффект эндо термический и поэтому для процессов пиролиза необходим подвод теплоты извне. Нагрев реакционных аппаратов большей частью производится горячими дымовыми газами, которые передают теплоту топливу через стенку или же при непосредственном соприкосновении с ним. Сухой перегонке подвергают твердые и жидкие топлива. Сухая перегонка твердых топлив (пиролиз) углей, торфа, древесины, сланцев — сложный процесс, при котором протекают параллельные и последовательные реакции. В общем, эти реакции могут быть сведены к расщеплению молекул, входящих в состав топлива, полимеризации, конденсации, деалкилированию, ароматизации продуктов расщепления и т. п. Качество и количество продуктов, получаемых при пирогенетической переработке различных топлив, неодинаковы и прежде всего зависят от вида перерабатываемого топлива, а затем для каждого топлива от температурных условий, продолжительности пребывания в зоне высоких температур и ряда других факторов. При процессах пиролиза получаются твердые, газообразные и парообразные продукты. [c.33]

    Подсчитать тепловой эффект реакции полимеризации пропилена до тетрамера. [c.213]

    Подсчитать тепловой эффект процесса полимеризации пропилена до его тетрамера в присутствии ортофосфорной кислоты при 180 °С. [c.213]

    Каталитическая полимеризация о.пефинов сопровождается положительным тепловым эффектом теплота полимеризации составляет около 370 ккал на 1 кг пропилена и около 173 ккал на 1 кг бутиленов. [c.326]

    В этой же работе описан одностадийный процесс паровой конверсии жидких углеводородов при 500—550 °С и 2—ЗМПа (СбНи+ -f2,5H20—)-4,75 СН4+1,25 СОг) с тепловым эффектом, практически равным нулю. Важно выдерживать температуру в пределах 500—550°С, так как ниже 500 °С происходит полимеризация углеводородных радикалов (закупорка пор катализатора), а выше 550 °С усиливается коксообразование. Катализатор должен быть чрезвычайно активным (70—75% Ni). Изучается также двухстадийный процесс газификации углеводородов, например гексана в метан. Каталитический риформинг можно использо1вать при подборе соответствующих сырья и режима для получения сжиженных газов (Сз—С4). [c.202]

    Большинство химических превращений углеводородов нефти, имеющих практическое значение, осуществляется в присутствии катализаторов. Катализаторы позволяют снижать энергию активации химических реакций и тем самым значительно повышать их скорость. В самом общем виде в этом и заключается сущность н значение катализа. Проведение реакции в присутствии катализаторов позволяет также резко снижать температуру процесса. Для реакций, ха рактеризующихся положительным тепловым эффектом (полимеризация, гидрирование, алкилирование и др.), это имеет особо важное значение, так как высокие температуры с термодинамической точки зрения для них неблагоприятны. Следовательно, катализаторы в данном случае и ускоряют процесс, и способствуют достижению наиболее высоких равновесных концентраций. Следует, однако, не забывать, что сдвигать положение равновесия катализаторы не могут, они в равной степени ускоряют как прямые, так и обратные реакции. [c.214]

    Разложение ДМД — эндотермический процесс с тепловым эффектом около 146,5 кДж/моль — проводится с подводом теплоты извне при 400—450 °С при более высоких температурах возрастает скорость побочной реакции (2), происходит термическая полимеризация изопрена и крекинг формальдегида, ускоряется гидролиз ДМД до диолов и изоамиленовых спиртов и т. д. [c.205]

    Энтропия также увеличивается при процессах расширения, растворения кристаллического вещества, при химических реакциях, првтекающих с увеличением объема (например, процесры диссацнации). В этнх случаях вследствие роста числа частиц неупорядоченность (беспорядок) возрастает. Напротив, процессы, связанные с увеличением упорядоченности (порядка в относительном расположении частиц),— охлаждение, конденсация, кристаллизация из растворов, сжатие, химические реакции, протекающие с уменьшением объема (например, процессы полимеризации),— сопровождаются уменьшением энтропии. Энтропию, как И тепловые эффекты, принято относить к определенным условиям. Общепринятыми являются /=25 С и Р=1 атм при этом газы считают идеальными, а для растворов принимают их состояние [c.207]


Библиография для Полимеризация тепловые эффекты: [c.109]   
Смотреть страницы где упоминается термин Полимеризация тепловые эффекты: [c.164]    [c.320]    [c.434]    [c.67]    [c.96]    [c.187]    [c.241]   
Химия кремнезема Ч.1 (1982) -- [ c.332 , c.335 ]




ПОИСК





Смотрите так же термины и статьи:

Теплово эффект



© 2025 chem21.info Реклама на сайте