Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо в реакциях Фишера Тропш

    Вторая часть статьи посвящена использованию нитридов железа как катализаторов реакции Фишера — Тропша, причем активность и избирательность действия нитридных катализаторов сопоставлены с этими же свойствами восстановленных и индуцированных катализаторов. Кроме того, ниже будут рассмотрены изменение нитридных катализаторов в процессе синтеза, а также возможность их промышленного использования. [c.259]


    Указанные работы Томсона были начаты им в 1957 г., но не следует думать, что радиохимический метод до этого времени вовсе не применялся в каталитических исследованиях. Эммет и Рогинский вполне оценили значение использования меченых радиоактивных соединений для выяснения вопросов о том, какой именно механизм реакции оказывается более верным для данной системы. Рассмотрим классический пример широко известного синтеза углеводородов из окиси углерода и водорода, реакции, для которой Фишер и Тропш [409, 410] нашли эффективные катализаторы почти сорок лет назад. Первоначально были сомнения относительно пути, по которому железный и кобальтовый катализаторы, используемые в этой реакции, позволяют получить большие количества жидких углеводородов. Согласно одному из возможных механизмов этой реакции, получению углеводородов предшествует образование карбидов металлов как промежуточных продуктов. Так, например, образовавшийся карбид железа РегС, реагируя с водородом, мог бы давать углеводород этилен — один из продуктов реакции  [c.135]

    Нитриды железа как катализаторы реакции Фишера — Тропша. [c.401]

    Нитриды железа как катализаторы реакции Фишера—Тропша. Гидрогенизация органических соединений синтез-газом. [c.418]

    Фишер и Тропш разработали процесс синтол, который осуществляли при 400-500 С и 10-15 МПа в присутствии подщелоченного оксида двухвалентного железа. Продукт реакции - смесь спиртов, альдегидов, кетонов, кислот и других органических соединений. [c.122]

    Добавление электронных промоторов приводит к понижению электронного сродства железа, теплоты адсорбции Н2 и к увеличению адсорбции СО. К электронным промоторам реакции Фишера- Тропша можно также отнести медь, которая облегчает восстановление железа [c.641]

    Отсюда следует, что катализаторами для реакций Фишера — Тропша являются металлы или промотированные металлы. Первыми из металлов, использованных как катализаторы, были кобальт и осмий с окисями щелочных металлов в качестве промоторов. Сейчас применяют кобальт, никель, железо и рутений, а в качестве промоторов — окиси тория, магния или циркония. Кобальт и ни- [c.304]

    Впервые реакция гидроформилирования была осуществлена в присутствии кобальтового катализатора процесса Фишера—Тропша. Впоследствии были исследованы и запатентованы в качестве катализатора многие другие металлы. В литературе сообщается о каталитической активности родия, кобальта, хрома, иридия, железа, марганца, натрия, магния, кальция, платины, рения, осмия и рутения. Однако в промышленности до настоящего времени преимущественно используются кобальтовые катализаторы. [c.255]


    В условиях реакции Фишера — Тропша нет обмена углерода между катализатором — карбидом железа Fea и газами метаном, этиленом, бутаном и 1-бутеном за несколько часов при 250°, но с СО2 при 322° обмен уже за 7 мин. достигает 30% [779]. [c.327]

    Можно принять, что синтез Фишера — Тропша на железных катализаторах протекает так же, как и на кобальтовых, т. е. кислород окиси углерода сначала связывается в воду, которая затем конвертируется в углекислоту, чему благоприятствуют более высокая температура синтеза на железных катализаторах и активность железа по отношению к реакции конверсии. Следовательно, суммарную реакцию синтеза на железных катализаторах можно разбить на две  [c.67]

    Как описано в ])яде патентов Рида [76], весьма сходные результаты получены при пропускании хлора и двуокиси серы через углеводород. Этот метод обычно известен под названием реакция Рида . Реакция нашла некоторое ограниченное промышленное применение в США и Германии для производства алкилсульфокпслот, легко получаемых нри гидролизе алкилсульфонилхлоридов [56, 7]. При производстве но этому методу сульфонатов (применяемых как детергенты и смачивающие агенты) из разнообразных парафинов предпочтение отдавали углеводородам, содержащим в молекуле от 12 до 16 атомов углерода. Получены также сульфонаты из парафина и более высокоплавкого парафина, получаемого но процессу Фишера—Тропша [7]. В парафинах с длинными цепями сульфонилхлорид может замещаться, но-видимому, в любое положение. Из простых парафинов пропан дает приблизительно равные выходы пропан-1-сульфонил-хлорида и вторичного производного. к-Бутан дает приблизите.тьно 1/д бутан-1-сульфонилхлорида и бутан-2-сульфонилхлорида изобутан дает только первичное производное. По данным [28] нри использовании в качестве катализатора азосоединения реакция протекает при температурах от Одо 75° без света. Имеются сведения, что добавка фосфорной кислоты [23, 26] в реакционную смесь нейтрализует вредное влияние загрязнений железа. Промышленному применению процесса препятствуют нежелательное образование хлоридов и другие факторы. [c.92]

    С 1955 по 1980 г. по методу Фишера — Тропша работал единственный завод в Сасолбурге (ЮАР). Здесь же продолжались работы по дальнейшему изучению и совершенствованию процесса. Эти и другие исследования, выполненные в то же время в других странах, рассмотрены в обзоре [6], содержащем сведения о разработке различных типов реакторов, теоретических и практических аспектах получения различных продуктов, механизме и кинетике реакции, а также о приготовлении и характеристиках используемых катализаторов. Данная глава посвящена главным образом процессу Фишера — Тропша, реализованному фирмой Сасол с использованием катализаторов на основе железа. Описаны также технологические усовершенствования, внесенные за время его эксплуатации, обсуждаются перспективы производства моторного топлива при сочетании процесса Сасол с другими. Следует заметить, что значительная [c.161]

    Исследуя эту реакцию, Фишер и Тропш в 1923 г полу-смесь углеводородов, состоящую в основном (на ) из н-алканов Реакция идет при 200 °С, давлении 1,5 МПа, над катализаторами, содержащими восстанов-le никель, кобальт и железо на кизельгуре Реакция, зможно, идет с промежуточным образованием карбена, орый далее при полимеризации и дает н-алкан [c.249]

    Состав иродуктов, получаемых в процессе синтеза Фишера — Троиша, может меняться в зависимости от условий (температура, давление, молярное соотношение СО Н2) и технологического оформления процесса. Но самым основным фактором, оцределяю-Ш.ИМ направление реакции, является катализатор. Катализаторы синтеза Фишера—Тропша — смешанные катализаторы. Практически пригодными для синтеза являются катализаторы на основе кобальта и железа с различными добавками окисей металлов (ТЬО , МеО, ТЮз, 7гОа, КаО, СаО). [c.227]

    Восстановление угольной кислоты при атмосферном давлении температура выше 300° выход жидких углеводородов 16,7% и газообразных углеводородов 46,4% механизм реакции сводится к 1) восстановлению углекислоты в окись углерода и 2) конверсии ее в углеводороды аналогично синтезу бензина по Фишер-Тропшу Железо с медью (только сильно подщелоченное) 5 молей кобальта -f 5 молей железа 4- 0,5 моля меди и 1% углекислого калия на кизельгуре 21Ш [c.146]

    Изучение реакции гидрирования двуокиси углерода в присутствии рутения 154], никеля [1, 57, 641, кобальта [571, железа [61, 62] позволяет расположить исследованные металлы по нисходящей активности в ряд Ки > N1 >Со > Ре, подобный ряду Фишера — Тропша—Дилтея. [c.124]

    В 1925 г. в Институте Фишера (Германия) была открыта реакция образования высших углеводородов из окиси углерода и водорода, протекающая при температуре 250—300 °С и давлении 0,1—1МН/м2 (1—10 атм) над железо-кобальтовым катализатором. При дальнейшем исследовании этой реакции удалось разработать более эффективные (кобальтовые) катализаторы, и уже в 1936 г. в Германии было налажено промышленное производство синтетических углеводородов. К 1941 г. по этому методу работали 9 заводов, а в 1942 г. мощности по получению синтетического топлива в Германии составляли 740 тыс. т/год. Промышленное применение этот процесс, получивший название процесс Фишера — Тропша , нашел только в Германии в период второй мировой войны. [c.87]


    К водяному газу прибавляют водород до соотношения его с окисью углерода приблизительно 2 1 и смесь пропускают для удаления серы над окисью железа, а затем над кобальтовым катализатором при 200°С. Предполагается, что реакция протекает с промежуточным образованием карбида кобальта СодС, который расщепляется водородом с образованием метиленовых радикалов, полимеризующихся в н-алканы и н-алкены. Из 1 газа получается 130—140 г углеводородной смеси (теоретический выход 209 г), большая часть которой выкипает в пределах бензиновой фракции. Вследствие преобладания углеводородов с нормальной цепью, этот бензин имеет октановое число лишь около 40 и нуждается в последующем риформинге и добавлении тетраэтилсвинца. Более высококипящая фракция имеет цетановое число 85 и является прекрасным дизельным топливом. Наряду с углеводородами в процессе Фишера—Тропша образуется также заметное количество кислородсодержащих соединений, в частности нормальных спиртов, альдегидов и кетонов. [c.307]

    Другой возможный путь реакции [411, 412] заключается в том, что окись углерода и водород вначале образуют углеродно-водородно-кислородный комплекс на новерхности катализатора. Эти комплексы могли бы затем служить ядрами для образования высших углеводородов по реакции, напоминающей цепной процесс, нри последующем присоединении к первоначальным комплексам молекул окиси углерода. Используя радиоактивную, меченную С окись углерода, Эммет [412—418] пришел к выводу, что первый механизм не выполняется. Для доказательства этого он использовал следующий метод. Образец железного катализатора частично превращали, подвергая его действию радиоактивной окиси углерода, в РеаС и определяли долю поверхности катализатора, содержащую радиоактивный углерод. После этого железный катализатор, содержащий радиоактивный карбид железа, приводили в соприкосновение с нерадиоактивными окисью углерода и водородом и заставляли эту газовую смесь циркулировать над поверхностью катализатора. Определяя количество радиоактивных углеводородов среди продуктов реакции, Эммет нашел, что только около 10% радиоактивности оказывалось перенесенной с поверхности катализатора в газовую фазу. Следовательно, образование карбида не может быть главным путем, по которому происходит синтез углеродов (см. гл. 8). Более поздние исследования с 1 С [412, 419, 420], в которых использовался такой же подход, привели к выводу, что главными промежуточными продуктами нри образовании высших углеводородов из смесей водорода и окиси углерода, проходящих над катализаторами Фишера — Тропша, являются смеси первичных и вторичных спиртов, образующихся с равной вероятностью. В настоящее время применение С в исследованиях катализа продолжает расширяться [421]. [c.135]

    Какого бы типа реактор мы ни использовали, для наблюдения за ходом реакции необходимо выбрать один (или несколько) из реагентов или продуктов реакции. Для реакций с простой стехиометрией, как, например, синтез аммиака, для расчета скорости реакции можпо взять любой из реагентов или сам продукт реакции. Однако обычно дифференциальную скорость определяют по доле аммиака в выходящем газе, поскольку ее можно быстро и точно измерить. Для более сложных каталитических процессов с изменяющейся стехиометрией выбор вещества становится несколько произвольным, но и здесь целесообразно основываться на доступности простого и достаточно точного аналитического метода. Синтез Фишера — Тропша на железе или кобальте описывается следующими последовательными уравнениями  [c.10]

    Результаты опытов по отравлению в реакторах с неподвижным слоем легче всего поддаются интерпретации, если катализатор отравлен заранее. Для этого катализатор погружают в раствор с известной концентрацией яда, так что можно ожидать, что содержание яда во всех зернах катализатора окажется одинаковым. Затем отравленный катализатор испытывают в реакторе с неподвижным слоем, где яд равномерно распределен по слою катализатора, но его распределение внутри зерен может быть неоднородным. Хотя результаты таких опытов весьма полезны и поддаются непосредственному истолкованию, они могут отличаться от результатов тех опытов, где отравление катализатора происходит в ходе реакции, так как а) во время предварительного отравления катализатор не мог быть в своем стационарном состоянии ж б) предварительно отравленный катализатор не может прийти в то стационарное состояние, в котором он был бы при работе на неотравленном сырье. Некоторые из этих трудностей можно проиллюстрировать на примере предварительного отравления соединениями серы восстановленного плавленого железного катализатора (Fe304 Mg0-K20) для синтеза Фишера — Тропша [70]. Восстановленный катализатор с удельной поверхностью около 15 м /г железа был погружен в раствор соединения серы в гексане, проанализирован и испытан в смеси IH2 + 1G0 при 21,4 атм. При содержании серы в виде HgS 8 мг на 1 г железа относительная активность катализатора снижалась до 10%, а при содержании серы около 10 мг на 1 г железа — до 1%. Последнее количество серы достаточно для полного хемосорбционного покрытия железа, находящегося на поверхности, и для реакции со всей щелочью. Предварительные работы показали, что катализатор сильно окисляется во время синтеза. После 10 дней синтеза больше 70% железа превратилось в магнетит и удельная поверхность уменьшилась почти до 1,0 м /г железа. Однако активность катализатора в опытах с чистым газом оставалась постоянной. При добавлении в условиях опыта сероводорода в исходную смесь относительная активность свежего катализатора понизилась до 10% при введении всего лишь 0,6 мг серы на 1 г железа [49]. В этом примере экстраполяция данных, полученных с предварительно отравленным катализато- [c.43]

    Конечно, хорошо известно, что сложная смесь нормальных, изо-и даже циклоуглеводородов может быть легко синтезирована в лаборатории из простых веществ. Так, например, процесс Фишера — Тропша — это процесс образования смеси насыщенных углеводоро- дов из СО и воды. Реакция протекает в присутствии катализатора (обычно никель, кобальт или железо) при давлении около 100 кГ/см и температуре 200—350° С. Смеси УВ, полученные этим и другими путями синтеза, обычно характеризуются равномерным распределением алканов. Многие из них имеют прямые неразветвленные цепи, но не имеют особенностей, характерных для углеводородов, присут-. ствующих во многих осадочных отложениях (например, преоблада- ние нечетных гомологов). Изопреноидные алканы, если они и обра-, зуются вообще в природных условиях, определить нельзя. [c.214]

    Обнаруженные на ранних стадиях исследования примеры отравления относятся главным образом к активности платины в реакции окисления п сходных реакциях (превращение двуокиси серы в трехокись, реакция образования воды из гремучего газа, разложение перекиси водорода), но основное применение эта группа металлов находит, пожалуй, в реакциях гидрирования. Действительно, большинство из современных работ по отравлению было проведено в связи с эти.м типом реакци11. Металлы вертикальной группы никель, палладий и платина, особенно важны благодаря их высокой общей активности и вследствие широкого применения их как для гидрирования, так и для дегидрирования. Меньшая активность кобальта и особенно меди сообщает этим элементам особые свойства, которые иногда полезны. Так, наиболее мягкое действие меди как катализатора гидрирования часто допускает выделение промежуточных продуктов, а применение меди вместо никеля для дегидрирования при высоких температурах обычно приводит к меньшему образованию продуктов разложения далее, кобальт (подобно никелю и, в меньшей степени, железу) является эффективным катализатором в специальном случае синтеза жидких углеводородов путем конденсационной гидрогенизации окиси углерода по методу Фишера—Тропша. Основное использование железо находит, однако, в синтезе аммиака, представляющем реакцию, близкую к гидрированию. Все эти процессы очень чувствительны к отравлению. Серебро и золото имеют незначительную активность для обычного гидрирования и поэтому в табл. 1 поставлены в скобки однако они использовались как эффективные катализаторы в особом случае восстановления нитробензола водородом до анилина [1], при окислительном дегидрировании метилового спирта до формальдегида. Вместо серебра можно использовать медь. [c.101]

    Рассматривая влияние электронной структуры катализатора на активность, Дауден [33] предположил, что карбиды, а также нитриды и карбонитриды должны быть менее активными в синтезе Фишера — Тропша, чем соответствующие металлы, так как электроны атомов в промежутках кристаллической решетки могут заполнять -оболочки атомов металла (поскольку считается, что каталитическая активность переходных металлов в реакциях с участием водорода обусловлена наличием незаполненной с -оболочки). Эта гипотеза подтверждается низкой активностью карбида кобальта по сравнению с активностью восстановленного кобальта [28, 29]. Для железных катализаторов указанная гипотеза, повидимому, неприемлема, поскольку наблюдаемая активность карбидов, нитридов и карбонитридов обычно выше активности восстановленных исходных катализаторов. Однако нельзя утверждать, что экспериментальные факты противоречат этой гипотезе, так как металлическое железо в условиях синтеза склонно к окислению. Подобно этому селективность нитридов, полученных из восстановленного железа, более выражена, чем селективность восстановленных исходных катализаторов или карбонизированных фаз, поскольку восстановленные и карбонизированные катализаторы окисляются в процессе синтеза. [c.287]

    Д-р Бриджер показал, что в случае, если скорость реакции лимитируется процессами диффузии в порах катализатора, положение может значительно облегчиться (статья 68). Я мог бы добавить, что это можно сделать различными путями, и привести некоторые примеры. При. исследовании синтеза Фишера— Тропша с восстановленным железным катализатором синтеза аммиака было замечено, что частицы катализатора полностью заполняются углеводородами, являющимися жидкими при температуре синтеза, и процесс сильно лимитируется диффузией реагирующих веществ через это масло. В качестве первого приближения можно считать, что при реакции синтеза эффективно используется лишь часть массы катализатора, примерно на глубину 0,1 мм от внещней поверхности зерна. Очевидно, что превращение синтез-газа можно эффективно проводить, если толщина слоя катализатора составляет около 0,1 мм, а также что концентрация продуктов реакции, водяных паров и углекислого газа возрастает до максимального значения именно на этом расстоянии. Таким образом, в толще катализатора создаются идеальные условия для окисления железа, и окисляющее действие катализатора локализуется преимущественно во внутренней части зерен. Эти фазовые превращения приводят к потере механической прочности катализатора и порождают разнообразные трудности, связанные с измельчением катализатора. Исходя из этих фактов, Бенсон и Шульц пришли к выводу, что эффективный катализатор должен представлять собой слой активного материала толщиной примерно 0,1 мм, нанесенный на прочный инертный материал. Катализатор такого типа был приготовлен путем умеренного окисления стальных [c.783]

    Оксопроцесс был широко изучен не только из-за важности в промышленном отношении, но также и потому, что он является гомогенной моделью для более важного гетерогенного процесса Фишера — Тропша [158]. Железо — более универсальный катализатор для синтезов Фишера — Тропша, чем кобальт. Например, реакция воды с газообразной СО, протекающая в присутствии небольшого количества щелочи, катализуется осажденным железом [c.513]

    ЛИ реакцию, катализируемую железом и щелочью. В 1936 г. в Германии начало работать первое промышленное предприятие, впоследствии в военные годы использовавшее катализируемый кобальтом процесс ФТ для получения значительной доли жидкого углеводородного топлива. С 1957 г. в ЮАР функционирует крупный завод ФТ (SASOL), использующий в качестве сырья каменный уголь, а в качестве катализатора железо [104]. С экономической точки зрения и производство жидких углеводородных топлив, и получение химических полупродуктов из синтез-газа в настоящее время невыгодно (исключение составляет этиленгликоль), поэтому функционирование заводов ФТ — это в значительной степени политическое решение. Из-за эмбарго на нефть в начале семидесятых годов и как следствие этого повышения цен на нефть во всем мире начали широко проводить исследования, сфокусированные на этом и родственных процессах. С 1926 г. этому вопросу было посвящено более 5000 статей и 5000 патентов. Процесс Фишера — Тропша и близкие к нему химические реакции были рассмотрены в обзорах [105, 106]. [c.135]

    Фишер и Тропш [171 предложили карбидную теорию образования углеводородов, согласно которой на поверхности катализаторов группы железа образуется карбид, который восстанавливается до метиленовых радикалов. Эти взгляды нашли дальнейшее развитие в работах Крэксфорда и Райдила [18—20], вызвали оживленный интерес и послужили стимулом тщательного изучения катализаторов. Однако карбидная теория оказалась несостоятельной. Против нее свидетельствует, в частности, то, что скорость синтеза значительно больше скорости образования карбидов, и, следовательно, стадия карбидообразования не может быть промежуточной в этой реакции [21—24]. [c.116]

    Исследовательские работы Баденской фабрики развивались дальше в направлении синтеза метанола. Заметные сдвиги в области синтеза высших спиртов произошли в 1923—1924 гг., когда Фишер и Тропш разработали процесс сннтол [13—16]. При этом процессе окись углерода взаимодействует с водородом под давлением 100—150 ат при температуре 400—450° в присутствии подщелоченной окиси железа. Продукт реакции представляет смесь спиртов, альдегидов, кетонов, кислот и других соединений. [c.142]


Смотреть страницы где упоминается термин Железо в реакциях Фишера Тропш: [c.226]    [c.5]    [c.348]    [c.418]    [c.100]    [c.180]    [c.306]    [c.106]    [c.190]    [c.278]    [c.71]    [c.508]    [c.187]   
Катализ и ингибирование химических реакций (1966) -- [ c.308 , c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Железо реакции

Тропш

Фишер



© 2025 chem21.info Реклама на сайте