Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромосома картирование, метод

    Любой сегмент локуса w, полученный в таком клоне, может быть использован для выделения всего локуса с помощью метода прогулка по хромосоме , который представляет собой усовершенствованный вариант рестрикционного картирования. Он основан на использовании перекрывающихся фрагментов, полученных в результате разрывов генома в одной и той же области. Принцип метода иллюстрирует рис. 37.5. [c.477]


    До недавнего времени мало было известно о локализации генов в хромосомах человека. Исключение составляли лишь признаки, сцепленные с полом (гл. 1, разд. В, 4), которые могут быть локализованы в Х-хромосомах. Ряд исследований, проведенных в последнее время, ознаменовались успехами и привели к систематическому картированию большого количества генов человека [169—171]. Наиболее важным оказался при этом метод слияния соматических клеток (дополнение 15-Д). Для слияния человеческих лимфоцитов с клетками грызунов часто используют инактивированный вирус Сендай, обладающий способностью вызывать сначала адгезию, а затем слияние клеток. Из гибридных клеток, полученных в результате слияния человеческих клеток с клетками мыши или хомяка, можно получить линии клеток, ядра в которых также сливаются. Хотя такие клетки могут размножаться, давая много поколений, тем не менее они склонны утрачивать при этом хромосомы, особенно те из них, которые ведут свое происхождение от клеток человека. Наблюдая за утратой определенных биохимических признаков, например некоторых ферментов, специфических для человека (которые могут быть отделены от ферментов хомяка методом электрофореза), можно установить наличие или отсутствие определенного гена в данной хромосоме. Очевидно, что для этого необходимо одновременно следить за потней хромосом на каждой стадии эксперимента. Новые методы окрашивания позволяют идентифицировать каждую из 26 пар хромосом человека. В настоящее время разрабатываются методы точного генетического картирования применительно к культуре клеток [171]. [c.268]

    Идентификация индивидуальной хромосомы, в которой находится исследуемый ген,-это только первый этап картирования. Основной задачей являются установление порядка генов и их точная локализация. В некоторых случаях метод анализа родословных позволяет расположить на генетической карте хромосомы три и более маркеров. Использование более эффективных методов генетики соматических клеток может дать более точную информацию. Существенную помощь в таких исследованиях оказывают хромосомные перестройки (см. гл. 21). Далее мы рассмотрим примеры использования делеций, транслокаций или дупликаций для картирования генов. [c.301]

    Степень разрешения, достигаемая при картировании, определяется используемыми методами. Наиболее современные методы окрашивания позволяли выявить до 1000 полос на всех 23 хромосомах человека. В среднем на хромосому при этом приходится 50 полос, хотя на некоторых хромосомах их можно обнаружить в несколько раз больше, чем на других (сравни хромосомы 1 и 22 в табл. 18.9). Гаплоидный геном человека состоит из 3 10 п.н. Каждая полоса содержит 3-10 п.н., что соответствует нескольким сотням генов. Таким образом, пределом разрешения картирования с привлечением цитогенетических методов являются расстояния, соответствующие сотням генов. [c.316]


    Появившиеся в последнее время методы позволяют составлять подробные карты очень больших геномов. Есть две категории карт 1. Физические карты, основывающиеся на строении молекул ДНК, составляющих каждую хромосому. Сюда относятся рестрикционные карты и систематизированные библиотеки клонов геномной ДНК. 2. Карты генетического сцепления их строят, основываясь на частоте совместной передачи потомству двух или нескольких признаков - генетических маркеров, различных у отца и матери и приписываемых определенному участку хромосомы. В качестве маркеров издавна принято использовать те гены, экспрессия которых обнаруживается по их эффекту (таковы, в частности, гены, вызывающие генетические болезни, например мышечную дистрофию). Разработанные сравнительно недавно новые методы с применением рекомбинантной ДНК дали возможность использовать в качестве генетических маркеров короткие последовательности ДНК, содержащие один из сайтов рестрикции и различающиеся у отдельных индивидуумов, такие последовательности особенно удобны для генетического картирования, потому что под действием рестрикционной нуклеазы возникают фрагменты, различающиеся по своей длине, и этот полиморфизм длины рестрикционных фрагментов (ПДРФ) легко может быть выявлен блот-анализом по Саузерну с помощью подходящего ДНК-зонда (рис. 5-90). [c.342]

    Генетическая карта. В результате применения описанного выше метода прерванной конъюгации, позволяющего выяснить временную последовательность переноса генов из клетки-донора, можно составить карту расположения генов в бактериальной хромосоме (рис. 15.17). Скорость их переноса в течение всего процесса остается постоянной. Моменты перехода внутрь клетки-реципиента позволяют судить о расстояниях между ними в хромосоме. При использовании этого метода не удается учитывать различия менее одной минуты. Для более тонкого картирования может служить анализ сцепления при трансдукции (переносе генов фагом). [c.460]

    Метод окрашивания и идентификация хромосом. Дальнейшие успехи в картировании связаны с появлением новых методов идентификации индивидуальных хромосом, основанных на их дифференциальном окрашивании. Благодаря этим методам можно идентифицировать не только целые хромосомы, но и отдельные их части. В гибридных культурах довольно часто возникают хромосомные разрывы и перестройки. Это создает предпосылки для подходящей селекции гибридных клонов, содержащих интересующие нас части хромосом. Именно так некоторые локусы были отнесены к определенным хромосомным сегментам (или группе соседних сегментов). [c.202]

    При построении физических карт тех или иных районов хромосом или целых хромосом из геномных библиотек, содержащих крупные вставки (YA -, ВАС- или РАС-библиотек), наиболее приемлем метод картирования, основанный на использовании STS. STS — это короткий одно-копийный участок ДНК (примерно 100-300 п. п.), который можно вьшвить при помощи ПЦР с использованием уникального набора праймеров. Для получения протяженного контига, охватывающего значительный участок хромосомы, требуется большое число STS, находящихся на расстоянии 50-100 т. п. н. друг от друга. Напри- [c.462]

    Принцип этого метода прост. Рассмотрим его на конкретном примере картирования некоего фрагмента ДНК человека величиной 14,9 т.п.н., клонированного на фаговом векторе. Функция этого фрагмента ДНК не ясна. Известно, что он присутствует в количестве не более одной-двух копий на гаплоидный геном. Метафазные хромосомы человека, распределенные на стандартном предметном стекле, обрабатывали с целью удаления примесей связанной РНК и денатурации хромосомной ДНК. В качестве зонда использовали клонированный фрагмент ДНК, радиоактивно меченный ( Н) с помощью ник-трансляции. Пред- [c.314]

    Недавно был получен вектор, с помощью которого можно конструировать искусственные дрожжевые хромосомы (YA ) [9]. Это открытие сулит переворот в картировании появляется возможность клонировать фрагменты ДНК, на порядок превышающие по размерам космидные вставки. Вероятно также, что соответствующие геномные библиотеки окажутся более представительными. Метод отпечатков пальцев (фингерпринт) пока пригоден лишь для маленьких YA , но, используя гибридизацию, можно будет присоединять к космидам и большие фрагменты. Скорее всего в будущем для картирования генома будет применяться техника подбора пар, специально разработанная для YA . [c.33]

    Вызывая изменения в гене, а следовательно, и в фенотипе, мутации служат генетическими маркерами, позволяющими не только идентифицировать ген, но также локализовать его на хромосоме, плазмиде или другой молекуле ДНК в клетке с помощью методов генетического картирования. [c.174]

    Конкретные задачи генетического анализа диктуют выбор того или иного метода введения генетического материала в клетки-реципиенты. Так, прерываемая конъюгация позволяет установить последовательность генов на хромосоме. Однако этот метод неудобен при картировании маркеров, разделяемых 1—2 мин карты. В этих случаях необходимо картирование по трем точкам, которое проводят как на основе конъюгации, так и на основе трансдукции или трансформации. Для интеграции линейного фрагмента, внесенного в клетку, требуется двойной кроссинговер с кольцевой хромосомой. [c.214]


    Ген, ответственный за цветовую слепоту (дальтонизм), был локализован в Х-хромосоме в 1911 году. Особенности наследования генов, сцепленных с Х-хромосомой, позволили отнести к этой группе сцепления более чем 100 локусов. Хромосомная локализация аутосомных генов была впервые проведена в 1968 году. Определено расположение локуса, кодирующего антигены групп крови Даффи, которые, подобно антигенам группы ABO и другим антигенам крови, находятся на поверхности эритроцитов. Сравнение наследования изучаемого гена с распределением аберрантной хромосомы 1 показало, что он локализован в этой хромосоме. С тех пор на основании анализа родословных определены группы сцепления для 70 генов человека. Картирование многих из этих генов стало возможным после того, как было показано их сцепление с другими генами, локализацию которых удалось установить методами генетики соматических клеток. Примером этого служит картирование гена резус-фактора, впервые открытого в 1939 году. В 1971 г. изучение родословных показало, что ген Rh сегрегирует сцепленно с геном РЕРС, кодирующим пептидазу С. Годом позже при изучении соматических клеток ген РЕРС был локализован в хромосоме 1. Таким образом, стала известной группа сцепления и для гена Rh, кодирующего резус-фактор. В настоящее время картировано около 500 аутосомных генов, причем 100 из них картировано за последние 12 месяцев. Подавляющее большинство этих генов локализовано методами генетики соматических клеток. [c.294]

    Нет сомнений, что метод прогулка вдоль хромосомы будет широко использоваться в будушем для построения молекулярных карт больших участков хромосомы, а также для выделения и характеристики генетических областей, для которых единственными зондами являются соседние гены. Это существенно для обнаружения и характеристики пока не известных генов, а также при картировании элементов, важных для эволюции хромосом млекопитающих, таких как горячие точки при рекомбинации. [c.37]

    Один из методов, использованных для выяснения направления репликации у . oli, состоял в следующем. В хромосому бактерии в сайте att (рис. 15-1) встраивали профаг X, а во многие другие сайты, локализованные вдоль хромосомы, встраивали ДНК фага Ми-1 [189]. Особенно удобно использовать в этом случае фаг Ми-1, поскольку его включение может происходить во многих сайтах, локализованных в пределах хорошо картированных генов. Включение в пределах какого-то гена инактивирует этот ген (мутация добавки), что позволяет точно определить место локализации профага Ми-1. Удалось получить целую серию штаммов бактерий, содержащих как профаги X, так и фаг Ми-1, причем последний был локализован в различных участках хромосомы. Эти бактерии были, кроме того, ауксотрофны по определенным аминокислотам. Благодаря этому репликацию можно было останавливать. [c.272]

    Физическая карта (Physi al map) Расположение генов на хромосоме, установленное с помощью различных методов (электронная микроскопия, секвенирование, рестрикционное картирование). Расстояние на такой карте измеряется в числе пар нуклеотидов. [c.563]

    Мутации, т. е. наследуемые изменения в генетическом материале, представляют собой важное биологическое явление. Будучи первоисточником всех биологических изменений, они наряду с механизмами переноса генов обусловливают генетическую изменчивость, поставляющую материал для эволюции. Мутации и индукция новых мутаций мутагенами представляют собой ценный инструмент в генетических и биохимических исследованиях. Во-первых, изменения, которые вызывает мутация в определенном гене, позволяют не только идентифицировать этот ген, но и точно указать его место в хромосоме с помощью метода генетического картирования. Во-вторых, анализ мутантных щтаммов, у которых нарущены различные этапы сложной цепи биохимических процессов, может вскрыть детали организации генетического и биохимического аппаратов. В-третьих, знание механизма действия различных мутагенов может помочь в установлении корреляций между мутагенным и канцерогенным действием множества факторов окружающей среды, таких, как химические агенты, радиоактивное излучение и другие физические факторы. [c.8]

    У Е. соН выделено множество штаммов типа Hfr с различными точками начала переноса и различными направлениями хромосомного переноса [13, 27]. Выбор штамма Hfr, таким образом, зависит от участка бактериальной хромосомы, который собираются изучать в отношении картирования генетических локусов. Новые Hfr-доноры могут быть легко выделены на различном генетическом фоне с использованием либо модифицированного флуктуационного теста со штаммом F+ [6], либо интегративной супрессии в штамме F+ или R+, имеющем мутацию dnaA (Ts) [30]. Методы осуществления скрещиваний типа HfrXF" можно проиллюстрировать, используя какой-либо Hfr-штамм, например прототрофный штамм 12 (табл. 14.1), который передает свою хромосому 0-thr leu pro А la ... руг В F и чувствителен к налидиксовой кислоте и стрептомицину, и какой-нибудь штамм F", например штамм 14 (табл. 14.1), с мутациями, обусловливающими ауксотрофность по лейцину, пролину, аденину, триптофану и тиамину и устойчивость к налидиксовой кислоте и стрептомицину. У штамма 14 имеются и другие мутации, и наследование их аллелей дикого типа будет происходить как наследование маркеров, по которым не ведется отбор. Штамм 13 (табл. 14.1) несет меньше мутаций, чем штамм 14 он более удобен для проверки стабильности Hfr-фенотипа в штамме 12. [c.110]

    Первые опыты по переносу генетического материала осуществляли с помощью слияния целых клеток [1]. Такая техника нашла применение при изучении процессов дифференци-ровки и канцерогенеза, однако наиболее успешно ее использовали при картировании генов человека [2] и получении моноклональных антител [3]. Известно, что сформировавшийся при слиянии клеток грызуна и человека межвидовой гибрид спонтанно теряет человеческие хромосомы [4]. Как правило, утрата хромосом происходит случайным образом, и это позволяет конструировать гибридные линии клеток, в которых содержатся разные хромосомы человека. Корреляция между присутствием конкретной хромосомы человека и экспрессией генетического маркера является основой для отнесения соответствующего гена к определенной группе сцепления. Из 1300 генов человека, картированных на сегодняшний день, примерно треть локализована на конкретных хромосомах с помощью методов генетики соматических клеток [5]. Процесс утраты хромосом у внутривидовых гибридов происходит не так быстро, как у гибридов межвидовых [6]. При слиянии клеток мышиной мие-ломы с клетками селезенки формируются стабильные линии гибридных клеток. Их характеризует иммортальность (способность к неограниченному делению), унаследованная от миелом- [c.8]

    На противоположном конце спектра работают методы генетики соматических клеток, гибридизация in situ, анализ генетического сцепления их разрешающая способность ограничена 1000—5000 т. п. и. И наконец, середине щкалы соответствуют три метода, позволяющие использовать данные картирования для поиска специфических молекулярных нарушений. Это пульс-электрофорез [6—И], прыжки по хромосоме [3—5] и клонирование в клетках дрожжей [12]. [c.97]

    Сравнение физической карты Е. oli, построенной в опытах по прерыванию конъюгации, и рекомбинационной карты показывает, что 1 мин соответствует 20 единицам рекомбинации. Поскольку вся хромосома передается за 100 мин, ее общая рекомбинационная длина составляет 2000 единиц, а с учетом общего количества ДНК в хромосоме (4- 10 п. н.) единица рекомбинации соответствует ок. 2 тыс. п. н. Расчеты показывают, что рекомбинационное картирование разумно применять на расстояниях не более 3 мин, поскольку на больших расстояниях маркеры будут наследоваться независимо. При использовании конъюгационного метода трудно ставить реципрокные скрещивания. В связи с этим картирование на коротких участках обычно проводят с использованием трансдукции при помощи умеренного фага Р1. [c.215]

    В этой главе мы подробно опишем методы, используемые нами в настоящее время для конструирования и скрининга космидных библиотек, а также для опытов типа прогулка вдоль хромосомы . Прогулка вдоль хромосомы определяется как метод, используемый для выделения фрагментов ДНК, соседних с данным районом клонированной ДНК. В большинстве случаев такая прогулка осуществляется с помощью скрининга геномных библиотек, полученных из частично гидролизованной ДНК, с использованием меченого уникального рестрикционного фрагмента, выделенного из концевой области клонированного района. Таким образом получают клоны, содержащие перекрывающиеся фрагменты ДНК, и после рестрикционного картирования и соответствующей ориентации фрагментов материал этих клонов может использоваться для продолжения такой прогулки . [c.17]

    С целью выделения специфического зонда для прогулки вдоль хромосомы идентифицируют рестрикционный фрагмент, находящийся на конце вставки эукариотической ДНК. Такой фрагмент не должен содержать повторяющихся последовательностей ДНК- Это легко проверить путем гибридизации с суммарной ДНК мыши, используемой в качестве зонда для гибридизации по Саузерну. Этот зонд содержит космидную ДНК, гидролизованную различными ферментами (использованными для картирования). В нормальных условиях будут гибридизоваться лишь те рестрикционные фрагменты, которые содержат повторяющиеся последовательности ДНК (Steinmetz et al., 1980). Фрагменты, которые не гибридизуются и которые происходят из концевых областей вставки эукариотической ДНК, далее выделяют с помощью электрофореза в агарозном геле, используя один из многочисленных имеющихся методов (Maniatis et al.. [c.34]

    Использование YA для получения клонотек нуклеотидных последовательностей. При создании искусственных хромосом дрожжей in vitro в среднем удается клонировать фрагменты ДНК длиной 300 т.п.о. Однако с помощью гомологичной рекомбинации, проводимой непосредственно в клетках дрожжей, можно получать вышеупомянутые вставки в несколько млн п.о. Для реализации полной емкости вектора используют предварительно полученные YA -конструкции, в которых клонированы частично перекрывающиеся последовательности. Для обнаружения перекрывающихся клонов используют рестрикционное картирование с гибридизацией по Саузерну, метод прогулки по хромосоме и ряд других стандартных методов исследования генома, которые будут рассмотрены во втором томе этой книги. После обнаружения таких перекрывающихся клонов проводят скрещивание гаплоидных клеток, содержащих требуемые YA , в полученных диплоидных штаммах индуцируют мейоз, при котором с высокой частотой возникают требуемые рекомбинантные YA с протяженными непрерывными последовательностями - контигами - исследуемого генома. Для предотвращения образования в результате рекомбинации дицент-рических и ацентрических YA , которые нестабильны, объединяемые вставки должны быть клонированы в одной и той же 5 3 -ориентации по отношению к маркерам вектора. После завершения клетками мейотических делений и споруляции в спорах обнаруживают требуемые рекомбинанты, конечная длина которых после проведения серии последовательных скрещиваний может превышать 2 млн п.о. [105, в]. [c.91]


Библиография для Хромосома картирование, метод: [c.240]   
Смотреть страницы где упоминается термин Хромосома картирование, метод: [c.314]    [c.133]    [c.454]    [c.460]    [c.463]    [c.480]    [c.989]    [c.261]    [c.243]    [c.283]    [c.308]    [c.190]    [c.45]    [c.199]    [c.247]    [c.190]    [c.9]    [c.9]    [c.9]    [c.9]    [c.76]    [c.43]    [c.190]   
Молекулярная генетика (1974) -- [ c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте