Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные орбитали построение

    Вариационный метод дает возможность приблизительного определения энергии системы, но для этого необходимо подобрать правильную волновую функцию, что не всегда легко сделать. Для вычисления энергии молекулярных уровней существуют два метода, основанных либо на теории молекулярных орбиталей, либо на теории валентных связей. Эти две теории подходят к построению исходной волновой функции совершенно различными путями, а также отражают разные представления об основной модели строения молекулы. [c.144]


    При построении одноэлектронной молекулярной орбитали для молекулы водорода надо использовать линейную комбинацию ls-атомных орбиталей изолированных атомов водорода. В этом случае атомы одинаковы и основные состояния их также одинаковы. Если молекула образована двумя разными атомами, то при образовании связи одинаковые орбитали не всегда будут участвовать в обоих атомах. Например, в молекуле НС1 у атома водорода в образовании связи будет участвовать орбиталь Is, а у атома хлора орбиталь Is никакого участия в образовании связи не принимает. Это обстоятельство заставляет обратить внимание на важное условие при образовании связи для того чтобы две орбитали могли образовать прочную молекулярную орбиталь, необходимо, чтобы соответствующие им энергии были сравнимы по величине. В приведенном примере ls-орбитали атома хлора соответствует гораздо меньшая энергия, чем ls-орбитали атома водорода, поэтому они комбинироваться не будут. Необходимо также учитывать степень перекрывания между комбинирующимися орбиталями, хотя само по себе перекрывание является недостаточным критерием для образования связи, тем не менее оно важно. Математически перекрывание выражается посредством интеграла перекрывания или ортогональности Если значение велико, то и перекрывание орбиталей и велико. Особую важность имеет перекрывание в направлении связи, но следует сказать, что перекрывание вообще принадлежит к тем факторам, которые необходимо учитывать при выборе атомных орбиталей, участвующих в построении молекулярной орбитали. Необходимо учитывать и симметрию комбинируемых орбиталей. Известно, что р-орбиталь имеет положительную и отрицательную [c.153]

    Метод молекулярных орбиталей. Для приближенного представления вида функции основного состояния системы электронов молекулы существуют два метода, основанные на теории валентных связей (ВС) или на теории молекулярных орбиталей (МО). Эти две теории подходят к построению исходной волновой функции совершенно различными путями, а потому отражают разные представления об основном строении молекулы. В методе ВС принимается, что молекула построена из атомов, которые в некоторой степени сохранили свою индивидуальность, несмотря на то, что они участвуют в образовании химической связи. Метод ВС был разработан раньше метода МО. Он дает более наглядное представление о строении молекулы и поэтому его чаще применяют для качественного решения некоторых вопросов. В частности, метод ВС достаточно просто трактует геометрию молекулы. [c.23]

    В основе построения молекулярных орбиталей (МО), как и при построении атомных орбиталей (АО), лежат одни и те же положе-1 ия энергетический критерий, принцип Паули и правило Хунда. Каждая молекулярная, как и атомная, орбиталь характеризуется своим набором четырех квантовых чисел, отражающих свойства электрона в данном состоянии. Заполнение электронами энергетических уровней происходит в порядке возрастания энергии. Отличие атомных от молекулярных орбиталей состоит в том, что первые одноцентровые, а вторые многоцентровые. В атоме одно ядро, в молекуле их несколько. Молекулярные орбитали сложнее атомных. [c.113]


    Молекулярную волновую функцию в орбитальном приближении строят из молекулярных орбиталей. Приближенное же выражение для каждой из МО обычно находят как линейную комбинацию АО. Такой способ построения молекулярной волновой функции получил название метода МО ЛКАО. [c.60]

    Таким образом, мы видим, что теория молекулярных орбиталей хорошо объясняет экспериментальные данные. Но как распространить описанный подход на более сложные молекулы Мысленный процесс, который будет использоваться нами для объяснения сначала двухатомных молекул, построенных из атомов более тяжелых элементов, а затем еще более сложных молекул, можно кратко сформулировать следующим образом  [c.519]

    Энергия. Система МО молекулы Н2 используется для построения электронных конфигураций двухатомных гомонуклеарных молекул. Заполнение молекулярных орбиталей происходит в соответствии с принципом наименьшей энергии и принципом Паули, по два электрона размещаются на а- и по четыре на вырожденных я- и 8-орбиталях. Порядок, в котором возрастают энергии МО, устанавливается при исследовании молекулярных спектров и другими экспериментальными методами, а также при помощи квантовомеханических расчетов. Для гомонуклеарных молекул, более тяжелых, чем N3, установлена последовательность орбиталей по энергии  [c.74]

    Сформулируйте правило построения энергетических диаграмм молекулярных орбиталей двухатомных молекул, состоящих из разных атомов. [c.37]

    Вычислим энергию иона Н . В качестве новой функции для описания электрона в таком ионе можно выбрать молекулярную орбиталь, построенную в виде линейной комбинации атомных орбиталей [1] [c.183]

    Рассмотрим применение неэмпирических методов к расчету свойств молекулярных комплексов на примере слабых Н-связей, как в (НР)2 и (Н20)2, и сильных симметричных Н-связей тина (РНР) и (НаОа) . Обычно метод ССП реализуется с помощью молекулярных орбиталей, построенных в виде линейных комбинаций атомных орбиталей (МО ЛКАО). Существует три уровня точности неэмпирических расчетов  [c.12]

    Первый этап исследования заключается в построении молекулярных орбиталей. Для этого воспользуемся валентными 2s- и 2р-орбиталями каждого из двух атомов молекулы. На рис. 12-6 схематически изображены их энергетические уровни, а на рис. 12-7 показаны типы различных молекулярных орбиталей, образованных комбинациями этих атомных орбиталей. [c.520]

    Итак, в изолированной молекуле имеются о-связь и две я-связи. Необходимо определить еще место четырех электронов. Два электрона занимают разрыхляющую 2о-молекулярную орбиталь, построенную в основном из 2з- и 2р .-орбиталей кислорода. Электроны находятся вблизи ядра кислорода, и их ионизацион- [c.64]

    Опишем кратко получаемую физическую картину. Самые глубоко лежащие по энергии орбитали соответствуют молекулярным орбиталям, построенным почти целиком из атомных 15-орбиталей углеродов. Таких орбиталей, очень близких по энергии, ровно шесть, и если от них с помощью некоторого унитарного преобразования перейти к новым линейным комбинациям (разд. 5.5), то можно получить набор из шести эквивалентных четко локализованных орбиталей. Такими орбиталями (если не учитывать незначительных примесей других АО) будут шесть углеродных атомных [c.325]

    О построении молекулярных орбиталей октаэдрических молекул см. рис. 212 и 214. [c.268]

    Метод молекулярных орбиталей, с которым мы познакомились на примере двухатомных молекул, может быть использован также для объяснения свойств многоатомных систем. Общий способ построения молекулярных волновых функций для многоатомных молекул заключается в составлении линейных комбинаций из атомных орбиталей. Электроны на таких молекулярных орбиталях не локализованы между двумя атомами многоатомной молекулы, скорее они делокализованы между несколькими атомами. Эта модель принципиально отличается от представлений Льюиса, согласно которым пара электронов, обобществленых двумя атомами, эквивалентна одной химической связи. [c.551]

    Молекулярные орбитали в двухатомных молекулах, состоящих из атомов 1-го и 2-го периодов. При построении молекулярных орбиталей обычно ограничиваются использованием валентных атомных орбиталей — орбиталей внешнего электронного слоя, так как именно они вносят основной вклад в образование химической связи. Для i-элементов валентными следует считать также d-орбитали слоя, предшествующего внешнему (см. стр. 228). [c.189]

    В методе МО молекула рассматривается с той же точки зрения, что и атом. Предполагается, что электроны в молекуле находятся на молекулярных орбиталях, охватывающих все ядра в молекуле. В отличие от атомной орбитали (АО), МО является многоцентровой орбиталью. Для построения волновой функции молекулы все ее электроны распределяют по молекулярным орбиталям с наименьшей энергией, учитывая ограничения, налагаемые принципом Паули. Со1 ласно этому принципу на орбитали не может находиться два электрона, у которых все четыре квантовых числа были бы одинаковые. Поэтому на одной МО может находиться только два электрона, различающиеся спиновыми квантовыми числами. [c.24]


    Мы привели здесь это курьезное замечание потому, что подобное мнение среди химиков стало почему-то распространенным. Валентное состояние атома — не просто некий нуль отсчета . Оно было введено в теорию ВС с целью распространить ее на случай, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых им двухэлектронных двухцентровых связей. Вместе с тем, это понятие используется и в методе молекулярных орбиталей, в рамках которого оно обычно понимается как эффективная электронная конфигурация с дробными заселенностями АО и эффективными зарядами, что позволяет учесть как промотирование электронов с одних АО на другие, так и их перенос от атома к атому при образовании химических связей (см. приведенный выше пример для ряда С—СО— —СО2). И используется это понятие в обоих методах не только для построения качественной теории, но и при квантовомеханических расчетах .  [c.174]

    Построение системы энергетических уровней завершается размещением на них соответствующего числа электронов. В нашем случае на двух молекулярных орбиталях можно разместить четыре электрона, которые соответствуют образованию различных молекул и ионов. Это достигается следующим образом. Один электрон в системе из двух орбиталей а и а выбирает а как имеющую наиболее низкую энергию. Такое состояние отвечает образованию простейшей молекулы — молекулярного иона водорода HJ. Этот ион в теории молекул играет такую же роль, как атом водорода в теории строения атомов. В частности, принципиально важным является существование химической связи, образованной одним электроном. Второй электрон также направится на орбиталь а, и в соответствии с принципом Паули спины этих двух электронов должны быть спарены. [c.186]

    Чтобы применить полученные результаты для обсуждения электронного строения двухатомных молекул, нужно знать относительные энергии всех молекулярных орбиталей. Порядок устойчивости отдельных орбиталей можно установить экспериментально по молекулярным спектрам в УФ-области. Теоретически удается воспроизвести такую картину, если учесть взаимодействия различных атомных орбиталей, имеющих одинаковую симметрию. Так, например, если разность энергий между 25- и 2р-состояниями невелика, то при построении молекулярной (т-орбитали их необходимо учитывать совместно. В результате возникнут МО, не имеющие чистого 5- или р-характера, с некоторыми гибридными функциями, аналогичными тем, которые были введены в методе ВС. Не вдаваясь в дальнейшие подробности, перейдем непосредственно к окончательному виду энергетической диаграммы. На рис. П1.22 слева и справа находятся атомные уровни, которые при взаимодействии дают систему молекулярных уровней, изображен- [c.188]

    Таким образом, при построении волновых функций молекулярных орбиталей нужно учитывать относительные энергии, степень перекрывания и симметрию комбинирующихся орбиталей. [c.154]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Для построения молекулярных орбиталей используется вариант метода, называемый линейной комбинацией атомных орбиталей — молекулярные орбитали (ЛКАО—МО). В,его основе лежит способ получения одноэлектронных молекулярных орбиталей (МО) в виде линейной комбинации атомных орбиталей (ЛКАО). Если по-прежнему для двухатомной молекулы (например, Н,) обозначить волновые функции атомов ц>а и ф (атомные орбитали), то в общем виде их линейные ком- [c.25]

    Последовательное применение теории молекулярных орбиталей к многоатомным молекулам требует рассмотрения молекулярных орбиталей, построенных из нескольких атомных орбиталей (многоцентро-вых молекулярных орбиталей). Например, для молекулы метана надо [c.64]

    Гидрид бериллия, ВеНз, имеет линейную структуру. Для построения его локализованных связывающих молекулярных орбиталей сначала образуем две эквивалентные валентные орбитали атома Ве, направленные [c.551]

    Последовательное применение теории молекулярных орбита-лей к многоатомным молекулам требует рассмотрения молекулярных орбиталей, построенных из нескольких атомных орбиталей (многоцентровых молекулярных орбиталей). Например, для молекулы метана надо описать восемь молекулярных орбиталей, образованных четырьмя 15-орбиталями атомов Н и 2з-, 2рх-, 2ру, 2рг-орбиталями атома С. Такой подход теряет всякую наглядность и оправдан лишь при количественном кьантово-механическом рассмотрении подобных систем. Для большого числа молекул можно ограничиться двухэлектронными связями, т. е. рассматривать молекулярные орбитали изолированно для каждой химической связи. [c.72]

    Метод молекулярных орбиталей (МО). Метод МО исходит из некоторой фиксированной координации атомных ядер и строит систему многоцентровых молекулярных орбиталей, характеризуемых наборами квантовых чисел, подобно тому, как это делается для атомов. После построения системы молекулярных орбиталей добавление электронов осуществляется при соблюдении принципа Паули и правила Хунда. В обычно используемом варианте метода сами молекулярные орбитали строятся как линейные комбинации атомных орбиталей (ЛКАО). Чтобы атомные орбитали могли взаимодействовать с образованием молекулярных орбиталей, они должны 1) быть близки по энергии, 2) заметно перекрываться, 3) обладать одинаковой симметрией относительно образуемой химической связи. С то4ки зрения используемой терминологии метод ВС можно представить себе как частный вариант метода МО, где используются только двухцентровые МО. [c.184]

    Вторым параметром, непосредственно связанным с переносом электрона между двумя соседними атомами, является хорошо известный из теории строения молекул резонансный интеграл (3 (см. уравнение (1.13)). Это обстоятельство не является случайным, поскольку используемый Дж. Хаббардом подход к описанию двух состояний электронов в твердых телах имеет много обшего с двумя предельными случаями квантовомеханического описания электронного строения молекулы Нг. Действительно, в случае когда расстояние между атомами водорода близко к равновесному К Ко), электронное строение Н2 описывается двумя делокализованными молекулярными орбиталями, построенными в виде свя-зываюш ей ( )/) и разрыхляющей ( / ) линейных комбинаций атомных орбиталей (фн)  [c.62]

    Затем, в послевоенные годы его начал вытеснять мегоЗ молекулярных орбиталей (МО), о котором речь пойдет ниже. После периода абсолютного господства в квантовой химии теории МО, у исследователей, примерно с 1960 г., наблюдается все более возрастающий интерес к методу ВС По словам Р. Мак-Вини, сказанным им в 1969 г., Метод ВС как метод построения достаточно хороших молекулярных электронных волновых функций сильно дискредитировали за последние 20 лет, и теперь его обычно рассматривают просто как полуэмпирическую схему... Вместе с тем, следует подчеркнуть, что на его основе можно развить математически совершенно строгую теорию, которая с успехом может использоваться для проведения неэмпирических расчетов. Метод валентных связей заслуживает большего внимания, чем обычно ему уделяют . [c.170]

    На рис. 1.67 изображено установленное методом рентгено структурного анализа строение иона [Р1(С2Н4)СЬ]л Молекула С2Н4 расположена перпендикулярно плоскости, в которой лежат атомы хлора. Построение молекулярных орбиталей, связывающих [c.131]

    Результаты численных расчетов приобретают известную наглядность при построении карт электронной плотности молекулы. Эту информацию часто дополняют построением отдельных молекулярных орбиталей. Полная электронная плотность есть величина, инвариантная относительно унитарного преобразования отдельных орбиталей, и в качестве таковой она может допускать сравнение с экспериментальными данными (например, рассеяние рентгеновских лучей, профиль компто-новской линии и др.). При формировании химической связи происходит перераспределение электронной плотности между взаимодействующими подсистемами. Об этой характеристике химической связи можно судить по картам разностной электронной плотности  [c.185]

    При построении энергетической диаграммы молекулярных орбиталей иона [ rPeJ следует учитывать, что фтор более электроотрицателен, его атомы сильнее удерживают электроны, и его атомные орбитали более устойчивы, чем атомные ор- итали иона хрома (.- 0 Сг ), поэтому шесть атомг орбита лей ионов фтора (АО Г ) слс. ус7 p i положить d правой части диаграммы и ниже атомных орбиталей нона хрома. [c.209]

    Расчет электронной структуры молекулы диборана по методу МО приводит к представлению о трехцентровых молекулярных орбиталях, охватываюш,их два ядра бора и расположенный в середине атом водорода. Упрощенный метод построения трехцентровой орбитали состоит в использовании атомной ls-орбитали атома водорода и 5р= -гибридных [c.195]

    На рис. 1.62 изображено установленное методом рентгеноструктурного анализа строение иона (Р((СаН4)СЬГ. Молекула этилена С2Н4 расположена перпендикулярно плоскости, в которой лежат атомы хлора. Построение молекулярных орбиталей, связывающих центральный атом М и лиганд С2Н4, схематически представлено на рис. 1.63. Сплошной линией показаны орбитали центрального атома (иона) М и лиганда, пунктиром-обра- [c.139]

    На рис. 111 изображено установленное методом рентгеноструктурного анализа строение иона [Р1(С2Н4)С1з] . Здесь молекула С2Н4 расположена перпендикулярно плоскости, в которой лежат атомы хлора. Построение молекулярных орбиталей, связывающих Р1 и С2Н4, схематически представлено на рис. [c.231]

    Среди различных подходов к объяснению образования комплексного иона наиболее общий дает теория молекулярных орбиталей. Впервые она была применена к комплексным ионам Ван-Флском Ч В методе используются те же орбитали центрального атома, что и в методе Полинга, но, кроме того, и орбитали N координирующихся лигандов М — число лигандов), направленных к центральному атому. Таким образом, для построения молекулярных орбиталей при наличии шести лигандов пригодными будут пятнадцать атомных орбиталей. При октаэдрическом расположении лигандов это будут три вырожденные несвязывающие -орбитали (1 , йу ) каждая с четырьмя долями, направленными между лигандами, шесть связывающих, происходящих от гибридизации, и шесть соответствующих им разрыхляющих орбиталей. По аналогии с методом Полинга, конфигурацию молекулярных орбиталей можно представить следующим образом [жирные линии разделяют орбитали с различной энергией (см. рис. 7-4), а отдельные клетки изображают молекулярные орбитали]  [c.265]

    Учет л-связей. До сих пор мы пре небрегали я-связью, хотя данные, приведенные в табл. 7-10, наводят на мысль о необходимости ее учета с позиций теории молекулярных орбиталей. зй Орбитали металла имеют ту же симметрию, что и я-молекулярные орбитали лиганда. Следовательно, /гя ОРбитали, которые ранее называли несвязы Бающими, в действительности мо гут принимать участие в обра зовании я-связи. "Метод построения молекулярных орбиталей с участием я-орбиталей лигандов во многом сходен с методом построения молекулярных а-орбиталей. з -Орбитали расщепляются на связывающие и разрыхляющие,как показано на рис. 7-6. Снижение энергии для ая Связывающих орбиталей увеличивает разность в энергии между I2 - и незатронутой разрыхляющей ор биталью. Это увеличивает величину ООд А), и, следовательно, мы можем сказать, что лиганд, способный образовать я-связи, более сильный по сравнению с тем, который не может их образо аать. Согласно теории молекулярных орбиталей, увеличение раз ности в энергиях между и е -орбиталями, обусловленное а-связью, ответственно за спаривание электронов и образование низкоспиновых комплексов. В теории кристаллического поля это приписывается увеличению электростатического поля лиганда, а согласно теории молекулярных орбиталей, расщепление обусловлено увеличением ковалентности связи, а не увеличением электро татического поля. [c.270]


Смотреть страницы где упоминается термин Молекулярные орбитали построение: [c.523]    [c.214]    [c.621]    [c.94]    [c.220]    [c.91]    [c.94]    [c.266]    [c.149]    [c.170]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.570 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярные орбитали орбитали

Орбиталь молекулярная



© 2025 chem21.info Реклама на сайте