Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сополимеры природных и синтетических соединений

    При вальцевании или перетирании смеси нескольких полимеров длинные молекулярные цепи сравнительно легко разрываются — образуются макрорадикалы. Если механическая деструкция полимера происходит в отсутствие кислорода, то из макрорадикалов в результате их рекомбинации (взаимодействия) создаются макромолекулы блоксополимера. Если деструкцию вести в присутствии мономера другого строения, то макрорадикалы взаимодействуют с радикалами мономеров и создаются макромолекулы блоксополимера. Таким путем могут быть синтезированы высокомолекулярные соединения, которые не удается получить обычными методами, например сополимеры природных высокомолекулярных соединений (целлюлозы, крахмала) с синтетическими полимерами (полиакрилонитрилом, полистиролом). Низкомолекулярные полимеры (со степенью полимеризации 10—50), содержащие определенные функциональные группы, можно получить поликонденсацией (стр. 461), теломеризацией (стр. 449), ступенчатой полимеризацией (стр. 444). [c.459]


    Путем образования блокполимеров могут быть синтезированы не только сополимеры такого состава, которые могут быть получены обычными методами совместной полимеризации или поликонденсации, но и высокомолекулярные соединения, которые не могут быть синтезированы при помощи этих методов, например сополимеры природных высокомолекулярных соединений (целлюлозы, крахмала) с синтетическими полимерами (полиакрилонитрилом, полистиролом). [c.643]

    Использование реакции взаимодействия макрорадикалов является более широким и универсальным методом синтеза блокполимеров. Макрорадикалами называются полимерные радикалы, образующиеся при разрыве (деструкции) макромолекул в результате различных воздействий. Макрорадикалы могут возникать при интенсивной механической деструкции полимера (измельчение, раздавливание, истирание), действии ультразвука, облучении лучами высокой интенсивности и других аналогичных воздействиях. Макрорадикалы, значительно более устойчивые, чем радикалы, появляющиеся при распаде низкомолекулярных веществ, могут образовать в результате рекомбинации (взаимодействия) макромолекулы полимера, величина которых значительно больше, чем величина самих макрорадикалов. Если в реакции рекомбинации взаимодействуют макрорадикалы молекул различных полимеров, то в результате этого своеобразного процесса синтеза полимера принципиально возможно получение блокполимеров любого состава. Так, путем рекомбинации макрорадикалов были получены блоксополимеры крахмала и белка, ацетилцеллюлозы и полиакрилонитрила и ряд других сополимеров природных и синтетических высокомолекулярных соединений, синтез которых не может быть осуществлен другими методами. [c.644]

    Ферменты — это сополимеры, состоящие из различных аминокислотных мономеров. Поэтому легко понять, почему использованию синтетических органических полимеров для воздействия на активность низкомолекулярных соединений уделяется в последнее время все большее внимание [168] эти реакции могут служить в качестве моделей для более сложных ферментативных процессов. Хотя полимерные катализаторы значительно менее эффективны, чем ферменты, обнаружено некоторое сходство между природными и синтетическими макромолекулярными системами. В частности, полимер с заряженными группами склонен концентрировать и/или отталкивать находящиеся вблизи него низкомолекулярные ионные реагенты и продукты, и, следовательно, он будет функционировать как ингибитор или ускоритель реакции, протекающей между двумя молекулами. Однако если к такому полимеру присоединить еще и каталитически активные группы, то уже сама молекула полимера, а не его противоионы, будет принимать участие в катализе 169, 170]. [c.294]


    Только путем взаимодействия природных и синтетических каучуков с серой и другими полифункциональными соединениями вулканизация) могут быть получены различные сорта резины и эбонита. Дубление белков, обеспечивающее возможность их технического использования, также основано на химическом взаимодействии белков с альдегидами или другими бифункциональными соединениями. Наконец, к химическим превращениям относится направленная деструкция полимеров, часто применяемая для регулирования молекулярной массы полимеров, перерабатываемых в различных отраслях промышленности. На полном гидролизе целлюлозы основан процесс получения гидролизного спирта. Механическая деструкция полимеров используется в промышленном масштабе для изменения физико-химических свойств полимеров, а также для синтеза сополимеров новых типов. [c.211]

    Попытки синтезировать из изопрена полимер, подобный природному каучуку, завершились успехом лишь в последние годы в результате разработки подходящих твердых катализаторов, которые обеспечивают соединение изопреновых звеньев друг с другом упорядоченным образом с образованием кристаллической структуры. Хотя полученный таким образом синтетический полиизопрен почти точно имитирует природный каучук, не все свойства синтетического полиизопрена полностью идентичны свойствам природного каучука. Наиболее распространенные типы синтетического каучука представляют собой сополимеры. [c.473]

    К полимерам относятся многие природные и синтетические высокомолекулярные соединения. К полимерам нередко причисляют и синтетические высокомолекулярные соединения, содержащие два или три типа элементарных звеньев, хотя такие вещества было бы более правильно называть сополимерами или совместными полимерами (см. с. 129). [c.21]

    Линейные, разветвленные и сшитые макромолекулы. При определенных условиях даже простейшая реакция (1) может приводить к образованию не линейных, а разветвленных М. При этом ветви могут иметь длину того же порядка, что и основная цепь (длинноцепные ветвления), или состоять лишь из нескольких повторяющихся звеньев (короткоцепные ветвления). Разветвленные М. являются промежуточной формой между линейными и сшитыми М. (см. также Высокомолекулярные соединения). Примером линейных М. могут служить М. каучука натурального, регулярного поли-этилена, полиамидов и полиэфиров сложных, полученных поликонденсацией бифункциональных мономеров, целлюлозы, нек-рых белков, нуклеиновых кислот и др. Примерами синтетических разветвленных М. являются полиэтилен, полученный при высоком давлении, привитые сополимеры, полимеры, синтезированные поликонденсацией с участием три- или тетрафункциональных мономеров, природные М.— амилопектин (разветвленный компонент крахмала), гликоген и др. [c.49]

    Из приведенных данных видно, что для синтеза привитого сополимера полипропилена с различными винильными мономерами, так же как и при синтезе привитых сополимеров других природных или синтетических высокомолекулярных соединений, могут быть использованы различные методы образования макрорадикала, инициирующего реакцию привитой радикальной сополимеризации. [c.273]

    Пленкообразующие вещества по величине молекулярной массы условно делят на низкомолекулярные (молекулярная масса до 20 000)—мономеры, высокомолекулярные (свыше 20 000)—полимеры и олигомеры, занимающие промежуточные положения. К мономерам можно отнести растительные масла, природные смолы и битумы. Синтетические мономеры в качестве самостоятельных пленкообразователей не применяются. Перхлорвиниловые и другие полимеризационные смолы, сополимеры винилхлорида, эфиры целлюлозы относятся к высокомолекулярным пленкообразователям. Алкидные смолы, крем-нийорганические соединения, фенолоформальдегидные, моче-вино- и меламиноформальдегидные, эпоксидные и некоторые другие поликонденсационные смолы относятся к олигомерам. [c.6]

    Классификация высокомолекулярных соединений производится по их признакам. Их различают по происхождению, например природные и синтетические по химическому составу главной цепи, по структуре макромолекул, по физическим свойствам, по методу получения, по способу переработки в изделия и т. п. Высокомолекулярные соединения, состоящие из звеньев одного мономера, называются гомополимерами, а из звеньев различных мономеров — гетерополимерами или сополимерами. [c.210]

    Возможно также механическую деструкцию одного полимера вести в присутствии мономера другого строения. В этом случае образующиеся макрорадикалы, взаимодействуя с радикалами мономеров, дадут новый тип блоксополимера. Таким путем могут быть синтезированы высокомолекулярные соединения, которые не удается получить при помощп обычных методов сополимеризации, например сополимеры природных высокомолекулярных соединений (целлюлозы, крахмала) с синтетическими полимерами (полиакрилонитрилом, полистиролом и др.). Если при механической обработке смеси двух полимеров макромолекулы одного полимера будут разрываться с образованием свободных макрорадикалов, а второго практически останутся без изменения, то наиболее вероятным вторичным процессом будет прививка макрорадикалов к. макромолекулам второго полимера с образованием привитых, или графт-сополи-меров [c.199]


    Способностью к ионному обмену обладают некоторые природные соединения, например алюмосиликаты. Однако более широкое применение получили синтетические ионообменники, которыми обычно служат полимерные материалы. В качестве примера полимеров, служащих основой (матрицей) для ионитов, можно назвать сополимеры сти-)ола с дивинилбензолом и метакриловой кислоты с дивинилбензолом. онит состоит из матрицы, на которой имеется большое число функциональных групп. Последние или вводятся в мономер или в реакционную смесь при полимеризации, или прививаются к полимеру после полимеризации. Функциональные группы способны диссоциировать в растворе, при этом ионы одного знака заряда остаются на ионите, а ионы другого знака заряда переходят в раствор. В зависимости от того, какие ионы переходят в раствор, различают катиониты и аниониты. [c.348]

    Наибольшее техническое значение имеют химические реакции непредельных полимерных углеводородов, приводящие к образованию полимеров пространственного строения и используемые для вулканизации природного и синтетического каучуков (полиизопрена, полихлоро-прена, полибутадиена и их сополимеров). Это — реакции каучуков с полифункциональными соединениями, главным образом с серой, или межмолекулярные реакции, протекающие с образованием химических связей между макромолекулами. [c.252]

    Модификация полимеров при помощи привитой и блоксопо-лимеризации обладает рядом преимуществ перед методом совместной полимеризации мономеров. В некоторых случаях прививка мономера на полимер или взаимодействие между собой макромолекул различной химической природы или пространственной конфигурации позволяют синтезировать сополимеры, которые невозможно получить другими способами. Возможность применения этого метода для модификации любых высокомолекулярных соединений делает его практически универсальным. В привитых и блоксополимерах удается совмещать сегменты самых различных полимеров аморфных и кристаллических, органических и минеральных, синтетических и природных, что позволяет получать полимерные материалы с разнообразными, заранее заданными свойствами. О широком интересе исследователей к этому новому направлению в синтезе высокомолекулярных соединений свидетельствует появление многочисленных работ , в которых описаны процессы привитой и блоксополи-меризации и сделаны попытки систематизировать методы синтеза, выделения и идентификации полученных продуктов. Рядом авто-ров о, 31, 32 предложена классификация привитых сополимеров, в основу которой положен структурно-химический принцип, позволяющий охарактеризовать основные и боковые ветви как гомо-или гетероцепные, аморфные или кристаллические. В последнее время в литературе появились монографии, посвященные привитым и блоксополимерам Относительно более полной является работа Церезы , в которой использована номенклатура, развитая на основе предложенной ранее Пиннером и учитывающая строение продуктов привитой сополимеризации, а также описано около 1400 привитых и блоксополимеров, в том числе и содержащих поливинилхлорид. [c.369]

    В состав макромолекулы могут входить элементарные звенья одинакового или различного состава в белках — различные аминокислоты, в сополимерах — остатки различных мономеров. Макромолекулы могут отличаться и по принципу строения. Наконец, полимер вообще может состоять из макромолекул различного типа. Классификация высокомолекулярных соединений в соответствии с указанными особенностями строения макромолекул приведена в табл. 7. Большинство синтетических и природных полимеров относится к классу полимеризомерных веществ, т. е. принцип построения макромолекул, состоящих из одинаковых элементарных звеньев, не вполне идентичный, а аналогичный, что необходимо учитывать при характеристике структуры высокомолекулярных соединений. Это обстоятельство наиболее отчетливо проявляется в возможных отклонениях в составе и строении макромолекул. Поэтому харак- [c.20]

    Кумароновые или кумароно-инденовые смолы были первыми синтетическими смолами, использованными в промышленности . Эти сравнительно низкомолекулярные продукты широко применяются в резиновой промышленности в качестве добавок, повышающих клейкость пластификаторов и, что особенно важно, диспергирующих агентов для несажевых наполнителей типа двуокиси кремния и различных синтетических и природных силикатов, например каолина. Сами по себе кумароно-инденовые смолы не усиливают эластомеры, но улучшают диспергирование в них несажевых наполнителей типа двуокиси кремния и каолина, вероятно, вследствие замещения слабых водородных связей между частицами кремнистых наполнителей более прочными водородными связями между теми же частицами и смолой. Кумароно-инденовые смолы получаются путем кислотной полимеризации из неочищенных фракций каменноугольной смолы с интервалом температур кипения 150—200° С. Кумароно-инденовые смолы в основном являются полиинденовыми, хотя содержат различные количества полимеров и сополимеров кумарона, стирола и родственных им соединений. Путем реакции каменноугольных продуктов с фенолами получают смолоподобные материалы с различными свойствами. Эти модифицированные кумароно-инденовые смолы известны в промышленности под названием невиллаков. [c.417]

    Пленкообразующие вещества по молекулярному весу делят, на мономеры, полимеры и олигомеры. К мономерам можно от- < нести растительные масла, природные смолы и битумы. Синтетические мономеры в качестве самостоятельных пленкообразо- вателей не применяются. Перхлорвиниловые и другие полиме- I ризационные смолы, сополимеры винилхлорида, эфиры целлюлозы относятся к высокомолекулярным пленкообразователям (молекулярный вес выше двадцати тысяч). Алкидные смолы, кремнийорганические соединения, фенолформальдегидные, мо-чевино- и меламиноформальдегидные, эпоксидные и некоторые другие поликонденсационные смолы представляют собой олигомеры. [c.4]

    Блокполимерами, или, точнее блоксополимерами, называются природные или синтетические высокомолекулярные соединения, в макромолекулах которых чередуется большее или меньшее число звеньев (блоков) двух или нескольких полимеров. В отличие от сополимеров, получаемых по реакции цепной полимеризации, в которых чередование отдельных мономеров в цепи носит случайный (статистический) характер, в блокпо-лимерах чередование групп звеньев (блоков) является вполне закономерным. Ниже приведена схема строения блоксополимера и сополимера, полученного методом цепной полимеризации из мономеров А и Б [c.643]

    Тетриловый спирт смешивается со спиртами, углеводородами, хлорированными углеводородами, сложными эфирами, кетонами, эфиром. Он является хорошим растворителем большого числа разнообразных соединений, применяемых в производстве пластических масс и лаков, напри мер всех природных смол, самых различных полярных и неполярных синтетических полимеров, нитрата целлюлозы в присутствии веществ, повышающих смачиваемость простых эфиров целлюлозы, винофлекса S3 и S8, хлорированного поливинилхлорида, сополимеров винилхлорида и сложных виниловых эфиров, эфиров акриловой кислоты, простых виниловых эфиров, поливинилацетата и поливинилацеталей, хлоркаучука. При нагревании в раствор переходит также вторичный ацетат целлюлозы, полистирол и полиакрилаты. [c.398]

    Задолго до возникновения химии высокомолекулярных соединений как науки большое практическое значение имели процессы химической переработки полимеров, особенно природных (целлюлоза, белки, каучук). После того как в начале 30-х годов XX в. были разработаны методы синтеза полимеров, исследователи приступили к изучению химических превращений искусственных высокомолекулярных веществ. Если на первом этапе преследовалась только цель использования химических реакций для установления строения полимеров, то впоследствии продукты химической переработки этих веществ приобретают самостоятельное значение для производства пластических масс, лаков, синтетических волокон, ионитов и т. д. Сюда относятся хлорирование поливинилхлорида и каучука, гидролиз поливинилацетата в поливиниловый спирт, синтез из последнего поливинил-ацеталей, сульфирование, нитрование и хлорметилирование сополимеров стирола в производстве ионитов и т. д. [c.454]


Смотреть страницы где упоминается термин Сополимеры природных и синтетических соединений: [c.198]    [c.133]    [c.588]    [c.203]    [c.238]    [c.290]    [c.22]   
Общая химическая технология Том 2 (1959) -- [ c.643 ]




ПОИСК







© 2024 chem21.info Реклама на сайте