Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромосома исследования

    До недавнего времени мало было известно о локализации генов в хромосомах человека. Исключение составляли лишь признаки, сцепленные с полом (гл. 1, разд. В, 4), которые могут быть локализованы в Х-хромосомах. Ряд исследований, проведенных в последнее время, ознаменовались успехами и привели к систематическому картированию большого количества генов человека [169—171]. Наиболее важным оказался при этом метод слияния соматических клеток (дополнение 15-Д). Для слияния человеческих лимфоцитов с клетками грызунов часто используют инактивированный вирус Сендай, обладающий способностью вызывать сначала адгезию, а затем слияние клеток. Из гибридных клеток, полученных в результате слияния человеческих клеток с клетками мыши или хомяка, можно получить линии клеток, ядра в которых также сливаются. Хотя такие клетки могут размножаться, давая много поколений, тем не менее они склонны утрачивать при этом хромосомы, особенно те из них, которые ведут свое происхождение от клеток человека. Наблюдая за утратой определенных биохимических признаков, например некоторых ферментов, специфических для человека (которые могут быть отделены от ферментов хомяка методом электрофореза), можно установить наличие или отсутствие определенного гена в данной хромосоме. Очевидно, что для этого необходимо одновременно следить за потней хромосом на каждой стадии эксперимента. Новые методы окрашивания позволяют идентифицировать каждую из 26 пар хромосом человека. В настоящее время разрабатываются методы точного генетического картирования применительно к культуре клеток [171]. [c.268]


    СЛИЯНИИ подвижных гамет, немедленно претерпевают мейотическое деление с формированием гаплоидных спор. Хромосома хламидомонады довольно подробно картирована, и этот организм часто используется в биохимических генетических исследованиях. [c.48]

    Чтобы регулировать работу над различными аспектами всей программы, HGP распределяет финансы между разными исследовательскими группами. В большинстве случаев ответственность за создание генетических и физических карт конкретной хромосомы делят между собой крупные центры и небольшие лаборатории, которые сотрудничают друг с другом. Некоторые из наиболее крупных исследовательских институтов занимаются укомплектованием данных о генетических и физических картах генома. В результате молекулярно-генетических исследований генома человека появляется огромное количество новых данных о полиморфных зондах, STS-клонах, содержании генетических, физиче- [c.478]

    В бактериальных хромосомах часто видны пачки параллельных арок. Волокна ДНК в хромосомах жгутиковых и ядрах бактерий образуют либо гомогенную фазу, либо неупорядоченные агрегаты [89, 91]. По-видимому, это сопряжено с переходами золь — гель. Следует отметить, что в хромосомах высших организмов также видны модификации. При исследовании с помощью микроманипулятора хромосомы могут оказаться жидкими, хотя при других условиях, они не являются таковыми [54]. Стоит напомнить, что чистая ДНК наблюдалась в холестерическом состоянии несколькими авторами [5, 25, 28]. [c.304]

    Мало что известно о характере расположения ДНК внутри хромосомы. Генетические и цитологические исследования указывают на продольное расположение ДНК, которое специфично и постоянно для данной хромосомы. Хромосомы представляют собой образования, состоящие из многих нитей. Возможно, что в каждой нити вдоль всей ее длины идет одна-единственная молекула ДНК. [c.472]

    Процесс переноса. Если смешать популяцию клеток Hfr с избытком клеток F то почти каждая клетка Hfr найдет себе партнера F я будет с ним конъюгировать. Из такой смеси через определенные промежутки времени брали пробы и, сильно встряхивая их в смесителе, насильственно разъединяли партнеров. Затем пробы переносили на чашки с агаром для выделения рекомбинантов. И наконец, исследовали рекомбинантные штаммы, чтобы выяснить, какие гены были переданы донорами клеткам-реципиентам. Исследования показали, что каждый ген передается в совершенно определенный момент времени после начала конъюгации (рис. 15.16). Временная последовательность переноса генов соответствовала порядку их расположения в бактериальной хромосоме, установленному в результате генетического анализа. Это значит, что любой штамм Hfr представляет собой гомогенную популяцию, все [c.459]


    В течение времени, прошедшего между первым и вторым изданиями, изучение мутаций шло гигантскими темпами и было опубликовано множество работ, в которых описывалось действие разных физических и химических факторов на хромосомы и гены. В пределах настоящей книги будут изложены лишь итоги этих исследований. Несколько больше места отведено изложению биохимической генетики и связи генетики с индивидуальным развитием — очень важным и также быстро развивающимся областям исследования. [c.14]

    Хотя исследования в этой области находятся еще в начальной стадии, однако уже известно, что развитие особи в первую очередь направляется наследственными единицами, локализованными в хромосомах. Под их влиянием начинается ряд биохимических процессов, идущих с определенными скоростями и находящихся в очень сложном и строго определенном взаимодействии друг с другом на разных стадиях развития особи. Эта проблема выделилась в самостоятельную область науки, и поэтому здесь мы ее касаться не будем (см. гл. XX). Пока что мы рассмотрим, как ведут себя хромосомы в течение тех клеточных делений, в результате которых у взрослых организмов образуются половые клетки. [c.31]

    Мы уже знаем, что самки всегда получают одну из своих Х-хромосом от отца, а другую — от матери. Самцы же получают свою единственную Х-хромосому от матери, а У-хромосому— от отца. При скрещивании белоглазой самки и красноглазого самца в р1 все самцы должны быть белоглазыми, так как они приобретают ген белых глаз вместе со своей единственной Х-хромосомой, которую они получают от матери. Другие исследования показали, что У-хромосома почти не содержит генов и не несет доминантного аллеля, который мог бы подавить действие гена ш, локализованного в Х-хромосоме и обусловливающего белую окраску глаз. [c.143]

    Гены, определяющие присоединение агробактерий к растительной клетке и образование целлюлозных фибрилл, расположены как в Т-ДНК, так и на бактериальной хромосоме. Исследования механизма переноса Т-ДНК из агробактерий в клетку растения показали, что вирулентность контролируется на уровне транскрипции генов vir. При повреждении из растительной ткани выделяется сок с кислой реакцией (pH 5,0-5,8) и высокой концентрацией различных фенольных соединений, таких как лигнин и предшественники флавоноидов. Эти условия специфически стимулируют экспрессию генов vir агробактерий. Наиболее эффективным индуктором vir является моноцик- [c.462]

    Молекулы предшественников зрелых клеточных РНК подвергаются расщеплению и химической модификации. Совокупность биохимических реакций, в результате которых уменьшается молекулярная масса РНК-предшественника и осуществляются разные способы химической модификации с образованием зрелых молекул РНК, называют процессингом. Процессинг наблюдается и в прокариотических клетках, но особенно аюжны превращения предшественников клеточных РНК в ядрах эукариот. Хромосомы эукариотической клетки, в которых осуществляется транскрипция, локализованы в ядре и отделены двойной ядерной мембраной от цитоплазмы, где протекает трансляция. В ядре синтезируются предшественники всех типов цитоплазматических РНК- Зрелые молекулы РНК транспортируются в цитоплазму. Механизм транспорта РНК из ядра в цитоплазму исследован недостаточно. Полагают, что процессинг РНК с образованием зрелых молекул продолжается и в ходе их транспорта в составе рибонуклеопротендных частиц через поры ядерных мембран. В клетках эукариот только незначительная часть, около 10%, транскрибируемых в ядре последовательностей ДНК выяыяется в составе цитоплазматических мРНК. Основная часть новообразованной РНК распадается в ядре и не обнаруживается в цитоплазме. [c.163]

    Механизм действия метилирования не раскрыт. Модифицированная ДНК может оказывать влияние на локальную структуру в составе хромосомы. Вероятно, метилирование отдельных сайтов в составе гена меняет характер взаимодействия с белками и структуру хроматина. Действительно, сайты метилирования в отдельных исследованных генах совпадают с так называемыми гиперчувствитель-ными к нуклеазам сайтами в составе хроматина, наличие которых отражает активное состояние гена или его готовность к активации (см. гл. ХП). Метилирование может влиять и на структуру ДНК-Например, метилирование цитозина в составе синтетических поли-дезоксинуклеотидов с повторяющейся комплементарной последовательностью типа d( pG) -d(Gp ) способствует их переходу в Z-конформацию ДНК. [c.220]

    Триптофансинтетаза (стр. 141) состоит из двух субъединиц А и В (или а и ), первая из которых содержит всего лишь 268 аминокислот. Тонкую структуру гена А удалось картировать следующим образом. Было выделено большое число мутантных бактерий, неспособных расти на среде, не содержаш,ей триптофана (ауксотрофы по триптофану). Генетические скрещивания проводились с помощью специального трансдуцирующего бактериофага Pike [134]. В процессе размножения в чувствительных к ним бактериях трансдуцирующие бактериофаги иногда включают в собственную ДНК часть бактериальной хромосомы. В дальнейшем, когда такой фаг заражает другие бактерии, часть его генетической информации может переноситься в результате рекомбинации 3 хромосомы бактерий, переживших инфекцию. Используя серии мутантов с делециями аналогично тому, как это было сделано при картировании гена гЛ, удалось разделить ген А на ряд участков, а исследование частоты рекомбинаций позволило осуществить точное картирование. [c.251]


    Эффективный метод исследования основан на существовании в бактериях небольших генетических элементов, существующих вне хромосомы. Об одной группе таких элементов (или факторов), получившей название F-факторов, уже шла речь выше (разд. А, 1,г). Эти элементы, представляющие собой небольшие кольцевые молекулы ДНК, являются иредсЕавитеЛями 1 руш1ыд включающей большое число подобны х аген- [c.256]

    Другой особый вид хромосом, изучение которого позволило значительно расширить наши представления о ядрах эукариот, обнаруживается в профазе мейотического деления ооцитов. Речь идет о хромосомах типа ламповых щеток , которые были подвергнуты детальному исследованию на амфибиях Хепориз. Хромосома типа ламповой щетки представляет собой гомологичную пару хромосом, каждая из которых в свою очередь состоит из двух тесно связанных друг с другом хроматид. Хромосомы находятся в предельно линейной, несконденсированной. форме, причем около 5% содержащейся в них ДНК образует приблизительно 4000 точно спаренных петель, которые видны под электронным микроскопом. Каждая такая петля образована нитью двухцепочечной ДНК длиной около 50 нм, что соответствует приблизительно 150000 оснований. Тот факт, что ни в одной из петель не удается увидеть ни одного разрыва ДНК, подтверждает точку зрения, согласно которой единая молекула ДНК протянута в хромосоме через все петли от одного ее конца до другого. [c.297]

    Какие еще белки кроме гистонов обнаруживаются в клеточных ядрах Методом электрофореза в полиакриламидном геле было установлено, что в ядрах клеток НеЬа содержится около 450 компонентов, большинство из которых присутствует в небольших количествах (<10 000 молекул в расчете на одну клетку) и не обнаруживается в цитоплазме [302]. К наиболее кислым белкам относится большое число ферментов, включая РНК-полимфазу. Кроме того, в ядрах содержатся 1) определенные репрессоры генов, в основном не идентифицированные, 2) бел ки, связывающие гормоны, и 3) многие другие белки [303]. Наряду с ядерными белками, которым уделяется обычно основное внимание, определенную роль в регуляции фенотипического выражения генов играет также мало исследованный класс небольших ядерных РНК. Молекулы этой РНК длиной от 65 до 200 нуклеотидов могут стимулировать транскрипцию специфических генов, связываясь с комплементарными участками ДНК. Таким образом, информация, транскрибированная с одного участка хромосомы, может оказывать влияние на процессы, протекающие на другом участке или на другой хромосоме [303а]. [c.304]

    Происходившее в то время бурное развитие химии анилиновых красителей, последовавшее за открытием Вильямом Перкиным мовеина в 1856 г., стимулировало систематическое исследование окрашивания биологических образцов. В общем, было установлено, что ядра клеток глубоко прокрашиваются красителями основного характера. Это свойство привело Флеминга к введению термина хроматин для обозначения вещества ядер клеток, из которого был получен нуклеин [7]. Эта работа привела к открытию похожих на палочки сегментов хроматина, наблюдаемых только в критических состояниях процесса деления клетки. Было выдвинуто предположение, что эти сегменты являются носителями наследственного материала и для них было принято название хромосомы [8]. Прямая связь между этой цитологической работой и исследованиями Мишера была понята Вильсоном [9] В настоящее время известно, что хроматин близко подобен, если не идентичен субстанции, известной как нуклеин (С29Н49ЫэРз022, в соответствии с данными Мишера), анализы которого показывают достаточную точность химического соединения нуклеиновой кислоты и альбумина. И таким образом, мы подошли к замечательному выводу о том, что наследственность может, вероятно, реализовываться в результате физической передачи особого соединения от родителя к потомку . [c.33]

    В одном из исследований несколько копий чужеродного гена было встроено в разные заранее выбранные сайты в хромосоме В. subtilis, при этом для каждой из копий использовалась двухэтапная процедура (рис. 6.16). На первом этапе [c.125]

    Вся генетическая информация прокариот содержится в одной молекуле ДНК, имеющей форму ковалентно замкнутого кольца и получившей название бактериальной хромосомы. Длина молекулы в развернутом виде может составлять более 1 мм, т. е. почти в 1000 раз превышать длину бактериальной клетки. Длительное время считали, что в распределении нитей ДНК бактериальной хромосомы не прослеживается никакой закономерности. Однако если исходить из того, что молекула ДНК образует беспорядочный клубок, трудно объяснить процесс репликации и последующее распределение образовавшихся хромосом по дочерним клеткам. Специальные исследования показали, что хромосомы прокариот представляют собой высокоупорядоченную структуру, имеющую константу седиментации 1300 — 20005 для свободной и 3200—70005 для связанной с мембраной формы. В том и другом случае часть ДНК в этой структуре представлена системой из 20— 100 независимо суперспирализованных петель. В обеспечении супер-спирализованной организации хромосом участвуют молекулы РНК. [c.55]

    Само название нуклеиновые кислоты (от лат. nu leus — ядро) показывает, что открыты они были как составная часть клеточного ядра, в котором действительно присутствуют оба класса нуклеиновых кислот — ДНК и РНК. Основным местом локализации ДНК являются структуры клеточного ядра — хромосомы, в которых ДНК находится в виде комплексов с белками — дезоксирибонуклеотидов. ДНК ( 1% от общего количества) также обнаружена в митохондриях всех типов эукариотических клеток и в хлоропластах растительных клеток. В структуре ядерной ДНК заложена информация о видовых специфических признаках, которые определяют характер данной клетки и всего организма и передаются по наследству. В цитоплазме клеток имеются значительные количества РНК, участвующие в реализации генетической информации. Важными открытиями в изучении нуклеиновых кислот, удостоенными Нобелевской премии, явились установление пространственной структуры ДНК Дж. Уотсоном, Ф. Криком и М. Уилкинсом, ферментативный синтез в бесклеточной системе биологически активной ДНК, осуществленный А. Корн-бергом и С. Очоа, блестящие исследования М. Ниренберга, Р. Холи и X. Корана, послужившие предпосылкой для расшифровки генетического кода. [c.171]

    Вся генетическая информация протоцита содержится в одной единственной нити ДНК бактериальной хромосоме . Эта молекула ДНК у всех до сих пор исследованных бактерий имеет вид кольцевой нити длина ее контура составляет от 0,25 до 3 мкм. Гистонов нет. У многих бактерий была, кроме того, обнаружена внехромосомная ДНК она состоит из небольших, тоже замкнутых в кольцо молекул ДНК, получивших название плазмид. Информация, содержащаяся в плазмидах, не является необходимой для клеток, [c.11]

    Узелки распределены вдоль синаптонемального комплекса таким же обра- зом, как и перекресты например, подобно перекрестам, узелки отсут- 5 ствуют в тех областях, где синаптонемальный комплекс соединяет отрезки гетерохроматина. Кроме того, генетические и цитологические исследования Показывают, что произошедший кроссинговер препятствует осуществлению другого кроссинговера в близлежащем участке хромосомы. Точно так же и узелки, как правило, не располагаются очень близко друг к другу. 1 [c.24]

    И в самом деле, имеются прямые экспериментальные данные о том, что дифференцировкой спермиев управляют продукты диплоидного генома. Часть таких данных была получена при исследовании мутантов Drosophila, у которых в процессе мейоза хромосомы неравномерно распределяются между дочерними клетками в результате одни сперматозоиды содержат слишком мало хромосом, другие-слишком много, а у некоторых их вообще нет. Поразительно то, что дифференцировка всех этих клеток, даже тех, в которых вовсе нет хромосом, протекает нормально (рис. 14-41). Этот факт можно объяснить на основе упомянутого выше предположения продукты недостающих хромосом могли бы доставляться путем диффузии по цитоплазматическим мостикам, связывающим соседние клетки. Не исключено и иное объяснение в диплоидных сперматогониях или сперматоцитах первого порядка [c.39]

    Вся генетическая информация протоцита содержится в одной-един-ственной нити ДНК- бактериальной хромосоме . Эта молекула ДНК у всех до сих пор исследованных бактерий имеет вид кольцевой нити длина ее контура составляет от 0,25 до 3 мм. Гистонов нет. У многих бактерий была, кроме того, обнаружена внехромосомная ДНК она со- [c.27]

    Лизогенные бактерии обладают потенциальной способностью продуцировать фаги, но эту способность нельзя обнаружить ни морфологическим, ни серологическим исследованием. Фаг в таком неинфекционном состоянии, передающейся только дочерним клеткам при делении, называют профагом. Подобно другим признакам бактериальной клетки, наличие в ней профага наследуется. Поскольку все потомство лизогенной клетки тоже лизогенно, профаг, очевидно, должен реплицироваться синхронно и регулярно вместе с хромосомой клетки-хозяина (рис. 4.13). [c.147]

    Однако существенные сдвиги в изучении биологии нуклеиновых кислот произошли лишь в 40-х годах. Использование новых методов цитохимии и фракционирования клеточного содержимога позволило установить, что ДНК и РНК являются нормальными компонентами всех клеток — как растительных, так и животных, причем ДНК локализована в ядре, а РНК встречается и в цитоплазме [10, 11, 12, 13, 14, 18]. Более того, подобного рода исследования доказали, что в интерфазе и при митозе в ядре ДНК сосредоточена, по-видимому, в хромосомах. Последнее наблюдение- [c.12]

    О справедливости этого предположения говорят данные, полученные при изучении ДНК бактериофага Т2 (стр. 157). Очевидно, вся хромосома фага представляет собой единый кусок ДНК смолекулярным весом ,2-10 —1,6-10 , содержащий около 200 ООО пар оснований и имеющий форму двойной спирали [54]. О таком же молекулярном весе свидетельствуют результаты радиоавто-графических исследований [55]. ДНК бактериофага Т2, меченную in vivo Н -тимином, после мягкого лизиса осторожно экстрагировали и покрывали фотографической эмульсией. В течение 9 недель эмульсия подвергалась действию мягкого Р-излучения трития. После проявления на ней можно было рассмотреть непрерывные нити ДНК длиной около 50 мк. Расчеты показали, что такая нить должна содержать 195 ООО пар оснований и иметь молекулярный вес около 10 . [c.74]

    Образование РНК на ценях ДНК можно с успехом продемон- тpIipoвaть на гигантских хромосомах слюнных желез личинок СЫгопотиз. Некоторые участки этих хромосом могут очень сильно увеличиваться в размерах, образуя так называемые пуффы. При помощи радиоавтографии на них легко проследить образование РНК из предшественника — уридина, меченного тритием [180]. Исследование методом микроэлектрофореза дает возможность определять нуклеотидный состав РНК и ДНК (стр. 31) полученные результаты свидетельствуют о том, что образованная РНК представляет собой копию лишь одной цени ДНК [181]. Эта РНК, но-видимому, служит посредником в процессах передачи генетической информации (стр. 240) [205]. [c.235]

    Супрессия. При исследовании реверсии к дикому типу (т. е. возврата к прототрофности) в различных системах было показано, что в действительности повторная мутация происходит не в месте первичной мутации, а в другом участке хромосомы. В результате этой так называемой супрессорной мутации также наблюдается реверсия. Некоторые случаи такой псевдореверсии можно объяснить исходя из уже рассмотренных нами представлений. Возвратимся к фиг. 160 (вариант 4) и к обсуждению вопроса об ошибках в трансляции, вызванных мутациями со сдвигом рамки (стр. 491). Посмотрим, что произойдет, если вблизи первичной делеции нуклеотида возникнет вторая делеция (или вблизи первичной вставки нуклеотида возникнет вторая вставка) Легко видеть, что последовательность, возникающая после выпадения второго нуклеотида, например у +1, остается все еще дефектной  [c.495]

    Исследования на плодовой мушке показали, что простой На первый взгляд механизм определения пола в действительности сложнее. Несомненно, что Х-хромосома направляет развитие в сторону женского пола. Однако У-хромосома у плодовой мушки никак не влияет на пол. Например, можно получить особей типа ХО, т. е. имеющих одну лишь Х-хромосому, но лишенных У-хромосо-мы. Такие особи представляют собой типичных самцов, но они совершенно стерильны. Следовательно, наличие У-хромосомы обеспечивает плодовитость самцов, но она не влияет на определение пола как таковое  [c.127]

    У двудомных растений, так же как и у животных, в ряде случаев обнаружены специфические половые хромосомы. Впервые половые хромосомы у растений были обнаружены Алленом в 1917 г. при исследовании печеночного мха Sphaero- arpus. Выше было указано (стр. 35), что растения мхов всегда гаплоидны, тогда как спорофит — т. е. спорангий и его ножка — диплоидны. У вида, изученного Алленом, было обнаружено, что мужское растение имеет 7 обычных хромосом и одну маленькую точечную Y-хромосому, тогда как хромосомный набор женских растений состоит из тех же семи обычных хромосом и одной очень длинной Х-хромосомы (фиг. 52). При оплодотворении эти два хромосомных набора соединяются, и таким образом спорофит имеет набор 14А + X -Ь Y. Во время мейоза образуется 7 пар аутосом и одна пара X = У. Следовательно, половина спор получит набор 7А + X, а другая по- [c.135]

    Легче всего обнаружить транслокации, и поэтому они наиболее хорощо изучены. Гетерозиготы по транслокациям выявлены у многих растений, однако самые подробные исследования проведены на энотере. Изучая мейоз у этого растения, Клилэнд в 1924 г. обнаружил, что хромосомы ее всегда соединены в определенные комплексы, состоящие нз колец и цепей. Несколько позже Хаканссон установил, что подобное образование колец обусловлено транслокациями. [c.176]

    Первые работы в этом направлении, выполненные Мёллером и Пайнтером, были опубликованы в 1929 г. Сочетая генетические исследования с цитологическими, эти ученые сумели показать, что изменения сцепления генов, наблюдавшиеся после облучения, были обусловлены перемещением участков хромосом с одной хромосомы на другую. Эти транслокации были выявлены и цитологически, что показало полный параллелизм между генетическими и цитологическими данными. Если, например, некоторые гены Х-хромосомы после облучения обнаруживали сцепление с некоторыми генами хромо- [c.221]


Смотреть страницы где упоминается термин Хромосома исследования: [c.215]    [c.251]    [c.265]    [c.297]    [c.389]    [c.339]    [c.186]    [c.215]    [c.26]    [c.27]    [c.141]    [c.456]    [c.140]    [c.87]    [c.95]    [c.177]   
Генетика человека Т.3 (1990) -- [ c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте