Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства ковалентной связи. Форма молекул

    Алюминий, следующий за магнием, обладает заметной биологической активностью и является активатором некоторых энзимов,, а недостаток его в организме приводит к недостатку витамина Однако его роль все-таки значительно меньше, чем роль ионов натрия и магния. Атом алюминия слишком тян ел и велик для включения в структурную организацию клеток, а ион слишком мал и недостаточно поляризуем, чтобы попасть в число важнейших биологических катализаторов. Высокий заряд иона АР+ и склонность солей алюминия к гидролизу являются факторами, ограничивающими его роль в биохимических процессах. Другие качества, благоприятствующие участию в процессах жизнедеятельности (ковалентность связей, акцепторные свойства и т. п.) в большей степени присущи бору — аналогу алюминия во 2-м периоде. Предпочтительность бора, по сравнению с алюминием, доказывает предпочтительность элементов 2-го периода перед членами 3-го, Это становится особенно ясным при сравнении углерода с кремнием, который расположен в периодической системе под углеродом и так же как углерод способен к образованию четырех ковалентных связей. Кремния на Земле примерно в 135 раз больше углерода, но в биохимическую эволюцию включился все же углерод. Причина этого, в первую очередь, в стабильности связей С—С и 51—51. В первом случае расстояние между атомами в 1,5 раза меньше и соответственно энергия разрыва связи в 2 раза больше, т. е. связь С—С стабильнее. Поскольку построение организмов предполагает образование длинных цепей атомов, то устойчивые связи углерода имеют несомненное преимущество перед связями кремния. Кроме того, у кремния имеется лишь небольшая тенденция к образованию кратных связей. Все это делает соединения кремния неустойчивыми в присутствии воды, кислорода или аммиака. Однако кроме устойчивости другой очень важной особенностью биогенных элементов является способность к образованию кратных связей. Это можно проиллюстрировать сравнением свойств СОо и ЗЮг. В оксиде углерода (IV) между атомами С и О имеются кратные (двойные) связи, каждая из которых образована двумя парами общих электронов. Внешний слой каждого пз атомов в СОг приобретает стабильную структуру октета. Все возмол<-ности образования связей у этой молекулы исчерпаны. Благодаря легкости атомов и ковалентности связей СОг является газом, довольно легко растворяется в воде, реагирует с ней и в такой форме может быть использован живыми организмами. У кремния способность к образованию кратных связей практически отсутствует или, во всяком случае, гораздо ниже, чем у атома углерода. Поэтому атом 81 соединен с О простыми связями, при образовании которых остаются неспаренными два электрона у кремния и по одному у каждого из атомов кислорода. Лишенные возможно- [c.181]


    Вопросы для самопроверки 1. Дайте общую характеристику элементов V А подгруппы, исходя из их положения в периодической системе. Какие степени окисления характерны для элементов этой подгруппы 2. Как в ряду N—Р—Аз—5Ь—изменяются окислительно-восстановительные свойства элементов 3. Какова максимальная ковалентность азота и какова фосфора Ответ обоснуйте, исходя из положения этих элементов в различных периодах и строения их атомов. 4. По какому типу химической связи построена молекула N2 Какова кратность связи в молекуле азота Как объяснить малую реакционную способность азота 5. Какие степени окисления характерны для азота В каких гибридных состояниях могут находиться валентные орбитали атома азота Приведите примеры соединений азота с различным типом гибридизации его валентных орбиталей 6. При каких условиях осуществляется синтез аммиака Какими свойствами обладает аммиак Какова форма молекулы ЫНз Какую среду имеет водный раствор аммиака 7. Чем объясняется, что молекула ЫНз является донором электронной пары Какое строение имеет ион МН 8. Какие кислородные соед шения образует азот Какое строение имеют молекулы оксидов азота Какие из оксидов азота являются кислотообразующими 9. Какое строение имеет молекула азотистой кислоты Какие две таутомерные структуры известны для НЫОг Чем можно объяснить малую термическую устойчивость НЫОг 10. Приведите примеры реакций, подтверждающих окислительно-восстановительные [c.50]

    Ранее уже отмечалось, что неметаллические элементы обладают совершенно отличными от металлов свойствами. Как правило, неметаллические элементы являются плохими проводниками электрического тока (исключение составляет лишь углерод в форме графита) и тепла они довольно хрупки, нередко интенсивно окрашены, а их температуры плавления и кипения охватывают необычайно широкий диапазон значений. В элементарном состоянии неметаллы существуют в виде молекул, образованных обычными ковалентными связями, причем эти молекулы в одних случаях оказываются двухатомными, например Нз, С12,12 или N2, а в других случаях могут достигать гигантских размеров, как, например, в кристаллах алмаза, кремния или бора. [c.396]

    Ковалентная связь характеризуется рядом свойств направленностью, поляризуемостью, определяет форму (геометрию) молекул и др. Эти свойства и будут рассматриваться ниже. [c.91]

    На примере гидридов и оксидов типических элементов хорошо иллюстрируется корреляция между валентностью и номером группы элемента. Элементы, расположенные в левом нижнем углу периодической системы, представляют собой металлы. Они образуют ионные гидриды и оксиды, водные растворы которых обладают основными свойствами. Элементы, расположенные в верхнем правом углу периодической системы, являются неметаллами. Их соединения с водородом и оксиды представляют собой небольщие молекулы с ковалентными связями при нормальных условиях они существуют в форме жидкостей или газов и проявляют кйслотные свойства. В промежуточной части периодической таблицы между ее верхним правым и нижним левым углами находятся элементы, которые обнаруживают постепенно изменяющиеся свойства. По мере перехода от неметаллических элементов к семиметаллическим и далее к металлам их соединения с водородом становятся вместо кислотных инертными или нейтральными и далее основными (хотя эта общая закономерность осложняется многими отклонениями), а оксиды переходят более закономерным образом от кислотных к амфотерным и далее к основным. [c.323]


    Квантово-механическая теория молекул позволила выяснить не только природу насыщаемости, но и направленность валентностей. Как выяснилось, в образовании химических связей могут принимать участие электроны (в многоэлектронной молекуле), находящиеся в различных состояниях, т. е. на различных энергетических подуровнях ( , р, , /), а следовательно, и отличающиеся друг от друга формой и распределением электронного облака в пространстве. Это соответственно определяет свойства образуемых ими ковалентных связей. [c.150]

    Направленность ковалентных связей в пространстве придает многоатомным частицам (радикалам, молекулам, ионам) определенную форму — конфигурацию. От нее зависит внутренняя структура вещества, а следовательно, и его свойства. [c.55]

    В настоящее время принято считать, что в галогеноводородах орбитали атомов галогенов подвержены р -гибридизации. Тогда только одна вершина тетраэдра занята атомом водорода, а три другие — совершенно одинаковыми гибридными электронными облаками (рис. 43). На первый взгляд может показаться излишним постулирование рЗ-гибридизации для объяснения формы двухатомной (линейной) молекулы НГ. Однако ковалентная связь, образованная в результате гибридизации, обладает большей прочностью и, самое главное, неподеленные пары электронов становятся совершенно идентичными. Если же допустить образование НГ чистой р-орбиталью (один неспаренный электрон) атома галогена, то оставшиеся неподеленные электронные пары будут разной симметрии пара электронов -состояния, а две пары — р-состояния. Между тем совокупность физических и химических свойств галогеноводородов свидетельствует о тождественности всех неподеленных электронных пар. Это же положение характерно и для воды, т.е. оставшиеся неподеленными две пары электронов центрального атома обладают одинаковой симметрией (гибридной). [c.83]

    Изменение физических свойств каучука в результате вулканизации обусловлено появлением связей между макромолекулами через атомы серы. Нитевидные цепи сырого каучука связываются друг с другом неравномерно при помощи ковалентных связей и образуют редкую трехмерную решетку с гигантскими молекулами, проходящими через весь кусок каучука от одного конца до другого. Поэтому макромолекулы уже не могут изменять свои места одна по отношению к другой пластичность исчезает, и, следовательно, сонротивление на разрыв увеличивается. Однако связи через атомы серы столь редки (в мягком вулканизованном каучуке), что частичные термические движения макромолекул и возможность перехода из скрученной формы в удлиненную форму при растяжении не тормозятся. Поэтому эластичность сохраняется. Уменьшение способности к набуханию хорошо объясняется наличием трехмерной решетки. [c.943]

    Направленность ковалентной связи — одно из важнейщих ее свойств. Она обусловливает пространственную структуру молекул, т. е. их форму. Рассмотрим это на примере образования молекул НС1, Н2О и NH3. [c.85]

    Многие черты современной теории, рассматриваемой в настоящей книг были намечены в работах Лангмюра и других авторов, опубликованных в течение десятилетия после 1916 г., и в книге Валентность и структура атомов и молекул , напечатанной Льюисом в 1923 г. Однако эти ранние исследования содержали наряду со многими предположениями, вошедшими в современную теорию, также и ряд других, теперь полностью отвергнутых. Превращение электронной теории валентности в ее современную форму почти полностью обязано развитию квантовой механики. Последняя дала метод расчета свойств простых молекул, привела к полному разъяснению явлений, связанных с образованием ковалентной связи между двумя атомами, приподняла завесу тайны, окутывавшую химическую связь в течение десятилетий со времени, когда впервые возникло предположение о ее существовании, и, кроме того, ввела в химическую теорию новую концепцию, а именно — концепцию резонанса. Эта идея, хотя и не была полностью непредвиденной в химии, но тем не менее она не была прежде в достаточной степени ясно сформулирована и объяснена. [c.14]

    Так как атом бора в молекуле BF окружен только тремя электронными парами, для него весьма характерны свойства акцептора при проявлении их у атома бора сосредоточивается избыточный отрицательный заряд, и он образует четыре ковалентные связи. При этом увеличивается межатомное расстояние В — F. Если связи вполне эквивалентны (при образовании ВРГ иона), то гибридизация sp электронов приводит к тетраэдрическому расположению связей присоединение других атомов может, в принципе, привести к более или менее сильному искажению валентных углов, связанному с приближением формы молекулы к пирамидальной, с атомом бора в центре основания. [c.422]

    Химические свойства. Галогены — типичные неметаллы. Неметаллические свойства плавно убывают при переходе от фтора к астату. В свободном состоянии галогены существуют в форме двухатомных молекул Fg. Атомы в этих молекулах связаны одинарной ковалентной связью. Проявляя свойства окислителей, галогены восстанавливаются до однозарядных галоге-нид-ионов  [c.495]


    В зависимости от свойств элементов образующие химическую связь электроны могут находиться в различных энергетических и пространственных состояниях, в результате чего в молекулах возникают и разные типы связей. С целью классификации выделяют обычно два основных типа связи — ионную и ковалентную. Однако это разделение, условно и не отражает многообразия форм химического движения. [c.19]

    Комбинация связей различных типов при образовании соединений создает две основные возможности. Первая состоит в том, что компонентами клеточной структуры, вследствие участия ковалентных связей, могут быть атомные группы различных размеров и форм. Вторая и, возможно, наиболее важная состоит в том, что эти довольно жестко связанные компоненты могут быть получены в растворе или иным путем в виде устойчивых образований, которые затем могут соединяться с помощью некоторой другой формы связи нри условии, если присутствует также включаемое вещество. Между ковалентной и другими типами связей имеется качественное различие и в выполняемых функциях. Ковалентную связь в молекуле или комплексном ионе можно рассматривать в этом случае как постоянную, а любую другую связь между такой группой и какими-либо другими компонентами клеточной структуры как легче разрушаемую. Так, два иона можно разделить в растворе, молекулы или ионы, связанные водородными связями, можно также свободно оторвать друг от друга и, наконец, ван-дер-ваальсовы связи группы молекул могут быть ослаблены без нарушения основных химических свойств системы. [c.414]

    Задача физической химии нуклеиновых кислот состоит в описании и интерпретации ряда свойств, возникающих благодаря наличию у этих полимеров вторичной структуры. Первичная структура, т. е. природа и расположение ковалентных связей в молекуле, изучалась и будет изучаться специальными методами биохимии и органической химии. Аспекты вторичной структуры касаются размеров, формы и конформации макромолекулы, и их изучение проводится методами рентгенографии, а также менее специализированными методами физической химии. Чисто морфологические детали третичной структуры изучаются главным образом методами современной электронной микроскопии. Они включают вопросы взаимоотношения нуклеиновой кислоты и белка в нуклеопротеидах, организации агрегатов полинуклеотидных тяжей и упаковки субъединиц в вирусах и нуклеопротеидных частицах. При рассмотрении еще более высоких уровней организации, например вопроса о распределении нуклеиновых кислот в хромосомах, сомнительно, уместно ли для таких структур пользоваться термином молекула (или даже макромолекула). [c.519]

    С введением в органическую химию электронных представлений, основанных на понятии ковалентной связи, как мы уже говорили, возникла современная теория химического строения. Правда, это не значит, что классическая, т. е. безэлектронная, теория химического строения сошла со сцены. Такой вывод был бы совершенно ошибочен. Будучи более грубым приближением к действительности, чем электронные теории, классическая теория продолжает верно служить органической химии. На классическую теорию в первую очередь опираются при исследовании строения природных веществ, к ней и классической стереохимии обращается почти вся синтетическая химия, она лежит в основе систематики и номенклатуры сотен тысяч органических соединений. Более того, применяя различные корреляционные соотношения и, в частности, прибегая к представлению о типах и подтипах связей, можно создать феноменологические теории зависимости между химическим строением и разнообразными физическими и физико-химическими свойствами органических молекул. Эти зависимости имеют уже количественную формуй. [c.351]

    Графит — устойчивая при нормальных условиях аллотропная форма углерода. Он имеет серо-черный цвет и металлический блеск, кажется жирным на ощупь, очень мягок, оставляет черные следы на бумаге. Графит хорошо проводит теплоту и электрический ток, но его свойства резко анизотропны. Кристаллохимическое строение графита существенно отличается от структуры алмаза. Он имеет гексагональную структуру (рис. 144). Атомы углерода в графите расположены отдельными слоями, образованными из плоских шестиугольников. Каждый атом углерода на плоскости окружен тремя соседями ( р -гибридизация), расположенными вокруг него в виде правильного треугольника на расстоянии 0,412 нм. А расстояние между ближайшими атомами соседних слоев равно 0,340 нм и более чем в два раза превышает кратчайшее расстояние м ду атомами углерода в плоском слое. Поэтому графит имеет меньшую плотность по сравнению с алмазом, легко расщепляется на тонкие чешуйки. Химическая связь между атомами углерода внутри слоя имеет ковалентный характер с ярко выраженной склонностью к металлизации. Последняя обусловлена возникновением делокализованных 5Гр.р-связей в пределах шестиугольников (как в молекуле бензола) и всего макрослоя. Этим и объясняются хорошая электрическая проводимость и металлический блеск графита. Углеродные атомы различных слоев связаны слабыми силами Ван-дер-Ваальса. Преимущественно ковалентная связь между атомами углерода внутри слоя сближает графит с алмазом и тот и другой необычайно тугоплавки и обладают малой упругостью паров при нагревании. [c.359]

    Данная глава посвящена физическим и химическим свойствам чистьк элементов и сходных с ними веществ. Строение этих веществ существенно отличается от рассмотренного нами ранее строения соединений с ионными и ковалентными связями. Металлические и неметаллические элементы существуют вследствие образования химической связи между одинаковыми атомами, что ограничивает число возможных молекулярных образований и способов расположения атомов в твердых веществах. Неметаллические элементы образуют неполярные ковалентные молекулы, начиная от двухатомных молекул типа Н2, О2, N2 или 2 и кончая гигантскими молекулами элементарного углерода и кремния. Ко всем этим системам вполне применимы те критерии, определяющие устойчивость молекул, которые были изложены в гл. 7 и 8. В этих системах все валентные атомные орбитали с достаточно низкой энергией заполнены связывающими или несвязывающими электронами а, геометрия молекул определяется отталкиванием валентных электронных пар. Поскольку атомы благородных газов обладают устойчивым электронным строением, эти элементы существуют в виде одноатомных молекул. Многие неметаллические элементы способны существовать в одной из двух или даже нескольких аллотропных форм в качестве примера можно привести углерод, существующий в виде алмаза и графита, а также кислород, элементарными формами которого являются О2 и О3 (озон). Размеры и строение молекул неметаллических элементов определяются теми же факторами, которые рассматривались в гл. 7 и 8. Некоторые из этих веществ будут подробно обсуждаться в разд. 22.5. [c.387]

    Экспериментальные данные о свойствах структур в форме ленты Мёбиуса (типа лестницы 129а) или узла (типа 127) еще весьма скудны. Однако теоретический анализ особенностей таких молекулярных конструкций (см. [18а-с1, 21Ь,с] и цитированную там литературу) приводит к заключениям общего значения. Так, было установлено, что для соединений, молекулы которых имеют форму ленты Мёбиуса или тройного узла, должно наблюдаться новое явление, а именно топологическая хиральность. Все те хиральные молекулы, которые знакомы химикам уже более столетия, обладают тем свойством, что их энантиомеры могут быть в принципе превращены друг в друга путем непре-рьгвных деформаций (т. е. топологически такие энантиомеры неразличимы). Так, например, хиральный тетраэдр А можно превратить в его зеркальное изображетше С путем деформации углов через симметричную плоскую конформацию В (схема 4.45), причем для такой трансформации не требуется разрыва ковалентных связей. Такое обращение конфигурации давно и хорошо известно для тетраэдрических молекул производных трехвалентного азота типа (из-за чего энантиомерно устойчивые хиральные производные образуются только при введении четвертого заместителя вместо неподеленной электронной пары у азота, препятствующего выворачиванию азотного зонтика , либо в специально построенных высоконапряженных трехчленных циклах). Для хирального 5/Р-углеродного атома подобная инверсия практически невозможна из-за необходимости преодоления огромного энергетического барьера, связанного с возникновением плоского переходного состояния типа В (о высоте этого барьера и реальной возможности его преодоления [c.433]

    Конкретную форму участия электронов дополнительных уровней в контактном процессе можно представлять себе по-разному. Самое простое предположение сводится к трактовке электронов, создающих полупроводниковую проводимость независимо от их происхождения (тепловая проводимость, рентгеновская проводимость, фотопроводимость) как непосредственных участников каталитического процесса. Так, например, эти электроны могли бы действовать, вступая непосредственно во взаимодействие с электронами молекул реагирующих веществ, образуя новые ковалентные связи с большей или меньшей поляризуемостью. Один из вариантов такой схемы был использован недавно Волькенштейном для объяснения действия примесей на каталитические свойства ионных кристаллов. Против такого применения электронной схемы можно привести возражения. Из нее вытекает возможность огромного увеличения активности окислов при небольших отклонениях от стехиометрии, вызывающих рост количества свободных электронов в зоне проводимости в сотни тысяч, миллионы и даже в миллиарды раз. Опыты, поставленные для обнаружения этого эффекта у закиси никеля Равделем и Тукачинским в нашей лаборатории, дали отрицательный результат. [c.13]

    В развитии качественных электронных теорий органической химии, основанных на понятии ковалентной связи, можно наметить три периода. В первый период (от конца первого до начала третьего десятилетия нашего века) было выдвинуто само положение о ковалентной связи И сделаны нонытки, еще ограниченные, применить его в теории строения и свойств органических молекул. Во второй период (20-е — начало 30-х годов) была в главных чертах разработана теория электронных смещений, которая в силу своей универсальности и простоты завоевала прочную популярность у химиков-органиков. Третий период, продолжающийся до наших дней, характеризуется не столько введением новых фундаментальных идей (что стало прерогативой квантовой химии), сколько распространением теории электронных смещений на новые классы соединений и постепенной асиммиляцией ее идей квантовохимическими теориями. Такой переходной характер имеет особенно популярная в 30-е и 40-е годы теория резонанса в ее качественной форме. [c.60]

    Система никель — водород в связи с ее значением в каталитическом гидрировании олефинов является одной из систем, которая наиболее полно изучена с помощью измерений магнитной восприимчивости. При адсорбции наблюдается уменьшение намагничиваемости иримерно на один магнетон Бора. Это может происходить либо вследствие образования ковалентной связи И — N1, либо вследствие образования положительного иона Н+ — N1 (см. [323]). Однако уменьшение намагничиваемости еще не позволяет различить эти две возможные поверхностные формы. Просто это означает, что происходит спаривание -электронов металлов. Другие данные (термохимические вычисления, описанные в разд. 2.2.1.1) исключают возможность образования на новерхности ионов Н+ или Щ. Следовательно, уменьшение намагничиваемости означает образование ковалентной связи. В общем Селвуд и сотрудники показали, что поверхности металлического никеля обладают следующими свойствами 1) на новерхности катализатора гидрирования количество мест, доступных для адсорбции водорода, в три или четыре раза превышает количество центров адсорбции этилена 2) при адсорбции сероводорода имеет место диссоциация, в результате которой иа новерхности появляются два адсорбированных атома водорода и атом двухвалентной серы 3) энергия связи окиси углерода с поверхностью зависит от размеров частиц никеля и степени покрытия поверхности 4) при хемосорбции двуокиси углерода на никеле происходит образование двух связей на каждую адсорбированную молекулу (как это показано ниже), но максимальный объем, который может быть хемосорбирован при комнатной температуре, составляет только одну восьмую объема водорода, который может хемосорбировать та же поверхность. [c.123]

    Особым типом взаимодействия, занимаю-Рис. 11. Схема образова- щим промежуточное положение между хими-ния водородной связи. ческим и нехимическим, является взаимодействие атомов, приводящее к образованию водородной связи. Ато1М водорода имеет значительно меньший объем по сравнению -с другими атомами, поэтому его ядро может на очень короткое расстояние приблизиться к атомам, связанным ковалентной связью. Если при этом атом водорода химически связан с каким-либо электроотрицательным атомом, то при сближении двух молекул до расстояния, на котором становится возможным. переход протона, последний притягивается к обоим атомам сближенных мо- лекул (рис. 11). Такая форма связывания двух атомов разных молекул через водород называется водородной связью. Энергия водородной связи больше энергии ориентационного или дисперсионного взаимодействия. Водородную связь способны образовывать группы —ОН. —СООН, —1 Н—СО— и др. Наличием водородных связей между молекулами обусловлена ассоциация молекул. как в жидком, так и в парообразном состоянии, увеличение вязкости жидкостей и ряд других свойств веществ. [c.86]

    Выше мы отмечали, что при развернутой трактовке связи посредством пары электронов в молекуле Нд следует учитывать ионные формы Н.Т Нв и Щ Нв, хотя они имеют меньшее значение. При неодинаковых атомах такие ионные структуры (АВ и А В" ) могут заметно способствовать образованию молекулы, в особенности, если один атом значительно более электроотрицателен, чем другой (см. стр. 83). Волновомеханическая трактовка природы ковалентной связи позволяет объяснять связи промежуточного типа между ковалентной и иоино11 связью. Ее достоинство заключается в обсуждении исох возможных типов связи п в том, что доля участия различных структур 011ре.т,еляется на основании свойств рассматриваемых атомов. [c.74]

    Молекулярные силы, обусловливающие явления капиллярности, тождественны с силами, вызывающими как явления адгезии и когезии, так и химическое взаимодейс вие и растворение. В большинстве случаев силы молекулярного притяжения в жидкостях принадлежат к типу ван-дер-ваальсовых сил на них, однако, нередко налагаются чисто электростатические силы притяжения и отталкивания — в особенности в тех случаях, когда в молекулах присутствуют электролитически диссоциированные группы. В случае твёрдых поверхностей, как природа, так и величина когезионных сил определяются главным образом силами типа ковалентной связи. Величина и распределение всех этих сил вокруг молекул зависят не только от формы молекул, но также и от природы и расположения различных химических групп в молекулах. И поскольку выражение форма молекул является лишь удобным условным термином для передачи, например, понятия контура поля сил отталкивания, связанных с атомами, образующими молекулы, то в конечном итоге в законченной теории химических свойств поверхности следует учитывать все виды силовых полей вокруг молекул. В настоящее время структурная тсория органической химии является источником ценных сведений по этому вопросу, так ка с можно считать установленным, что структурные фо мулы, вошедшие в употребление в течение последних рёх четвертей столетия, определяют с большой точностью не только химические свойства, но и истинную форму и механические свойства молекул. Явления, рассматриваемые в следующей главе, особенно ясно показывают связь м жду некоторыми капиллярными свойствами и химическим строением. [c.30]

    Отдельное рассмотрение распределения простых неорганических кислот между двумя несмешивающимися растворителями позволяет обратить внимание на ряд факторов, характерных для экстракции гидратированных ионных соединений и отличающих их поведение от поведения ковалентных молекул. Ранее отмечалось, что экстракция ковалентной молекулы из водного раствора возможна, по существу, любым органическим растворителем, который не смешивается с водой, хотя специфические эффекты и изменяют в ряде случаев коэффициент распределения. Однако небольшие ионные формы относительно сильно сольватированы в водном растворе высокополярными молекулами воды, причем степень сольватации зависит от плотности их заряда и химических свойств. В связи с этим они обладают малой тенденцией к экстракции неполярными, некоординирующимися растворителями, которые не могут компенсировать возникающие потери энергии гидратации. Подобные же причины определяют, без сомнения, и нерастворимость ионных кристаллов в таких растворителях. Только те растворители, которые могут обеспечить первичную сольватацию и (или) представляют собой среду с высокой диэлектрической проницаемостью, способны преодолеть силы, удерживающие кристалл. [c.47]

    Анизотропия оптических, магнитных и других свойств кристалла обусловлена анизотропией молекул, а последняя в конечном итоге зависит от их формы — удлиненной, плоской или объемно вытянутой. Это обстоятельство также помогает сделать выбор между несколькими допустимыми стереохимическими конфигурациями молекулы. Дальнейшее уточнение структуры связано с учетом принципа плотной упаковки молекулы в кристалле должны располагаться так, чтобы свободное пространство между ними было минимальным (выступы одной молекулы входят во впадины соседней молекулы). Применение принципа плотной упаковки обеспечивает соответствие между положением молекулы в элементарной ячейке и ее структурой, т. е. с величинами ковалентных радиусов атомов, направлениями связей, валентными углами и т. д. Например, для парафинового углеводорода СНз(СН2)дСНз рентгенографическим путем найдено решетка моноклинная (а Вт с, а=7=90°, р 90°) с параметрами а=7,4 А, 6=5,оА, с=12,7 А в элементарной ячейке находится 5 молекул. [c.71]

    К ВМС относятся многие вещества, имеющие важное народнохозяйственное и биологическое значение. Сюда входят почти все синтетические волокна, пластмассы, каучуки, а также почти все материалы животного и растительного происхождения. Синтетические полимеры получаются методами полимеризации и поликонденсации. Характерной особенностью ВМС является наличие длинных цепных молекул, образованных из многих звеньев одинакового или различного химического строения с молекулярным весом от нескольких тысяч до миллионов. Молекулы могут иметь линейную форму (полиэтилен, целлюлоза), разветвленную (крахмал) или спиральную форму (белки, нуклеиновые кислоты). Вдоль цепи атомы связаны ковалентными связями, а между цепями возникают межмолекулярные силы взаимодействия типа Вандерваальсовых сил, которые действуют в обычных жидкостях. Цепи могут быть связаны поперечными химическими связями (вулканизованный каучук) и тогда полимеры имеют строение пространственной сетки. Свойства полимера зависят от длины цепи, природы атомов, входящих в состав молекулы, распределения атомов в цепи, взаимодействия молекулы с окружающей средой, с соседними молекулами полимера или с молекулами жидкости в растворе. Звенья молекулярной цепи ВМС обладают способностью к ограниченному взаимному вращению вокруг валентных связей, это приводит к гибкости цепи и возможности изменения ее конфигурации. Одну из основных групп ВМС составляют каучукоподобные вещества или эластомеры, способные к большим обратимым (высокоэластическим) деформациям. Все они содержат длинные цепные молекулы, отличающиеся высокой гибкостью. Если [c.284]

    Как теперь установлено, многие соединения типа RiSbX не имеют солеобразных свойств и ведут себя как ковалентные вещества. Все заместители в таких соединениях ковалентно связаны с пятикоординированным атомом сурьмы, в результате чего их молекула имеет геометрию тригональной бипирамиды, тогда как в ионе стибония атом сурьмы имеет тетраэдрическое окружение. Переход из первой формы во вторую может происходить под влиянием растворителя. [c.12]

    В последние 30 лет стало очевидным, что, помимо химических реакций, по крайней мере столь же важны физические взаимодействия между молекулами — взаимодействия, при которых не происходит ни образования, ни распада ковалентных связей. Например, регуляция химических реакций (т. е. степень их протекания) осуществляется как путем физических изменений структуры макромолекул, так и путем изменения реакционной способности активных центров в макромолекулах, связанных с нековалентным присоединением малых или больших молекул. Более того, особые свойства крупных агрегатов макромолекул, которые находятся в клетках или в различных частях организма (т. е. в мембранах, клеточных стенках, хромосомах, сухожилиях, волосах и т. д.), определяются нековалентными физическими взаимодействиями. Следовательно, недостаточно знать только химические реакции для понимания сложных биологических систем необходимо также знать физические свойства составляющих их молекул. Выяснение этого и является основной задачей физической биохимлш. Приложение полученных данных к биологическим системам лежит в основе современной науки, названной молекулярной биологией. Большая часть данной книги посвящена описанию методов, применяемых для характеристики макромолекул. Поскольку язык, описывающий макромолекулы, обычно незнаком студенту-биохимику, вначале будут объяснены значения терминов и понятия, которые используются при рассмотрении свойств и формы макромолекул и переходов между различными формами. [c.11]

    Природа физико-химических взаимодействий в промывочных жидкостях определяется действующими межатомными и молекулярными силами. Эти силы, обусловленные расположением и движением в атомах и молекулах электрических зарядов и вследствие этого имеющие электрическую природу, определяют свойства и характер взаимодействия компонентов, которые содержатся в фазах промывочных жидкостей — минералов, воды, химических реагентов, газов и др. Несмотря на единую электрическую природу, эти силы различны, а потому отличаются и связи, возникающие при их взамодействии. В настоящее время различают пять основных форм связи ионную (гетеронолярную), ковалентную (неполярную или гомеополярную), водородную, металлическую и молекулярно-поляризационную, обусловленную силами Ван-дер-Ва-альса. [c.7]


Смотреть страницы где упоминается термин Свойства ковалентной связи. Форма молекул: [c.109]    [c.101]    [c.101]    [c.441]    [c.272]    [c.429]    [c.77]    [c.53]    [c.219]    [c.7]    [c.428]    [c.341]    [c.486]    [c.283]    [c.183]   
Смотреть главы в:

Неорганическая химия -> Свойства ковалентной связи. Форма молекул




ПОИСК





Смотрите так же термины и статьи:

Ковалентность

Молекулы связь

Связи ковалентные Связи

Связь ковалентная

Форма молекул



© 2025 chem21.info Реклама на сайте