Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трения коэффициент определение по измерению диффузии

    В качестве примера приведем измерения Вебера , проведенные на сывороточном альбумине. Измерения деполяризации, сделанные вблизи изоэлектрической точки белка, дают коэффициенты вращательной диффузии, которые согласуются с коэффициентами, определенными другими методами (табл. 29). Из этого вытекает, что флюоресцирующее место (в этом случае молекула красителя, соединенная с молекулой белка) является неспособным к независимому движению. Когда pH уменьшается, наблюдается резкое увеличение степени деполяризации, т. е. вращательное движение флюоресцирующего места становится облегченным. В то же самое время, как было показано на рис. 110, наблюдается увеличение поступательного коэффициента трения, которое в отсутствие других данных можно объяснить предположением, что либо сывороточный альбумин принимает новую удлиненную жесткую конформацию или что его структура становится рыхлее (набухает) и приближается к структуре гибкого клубка. В любом случае это должно сопровождаться увеличением вращательного коэффициента трения молекулы в целом. Наблюдаемое увеличение свободы вращения флюоресцирующего места должно, следовательно, соответствовать увеличению свободы внутреннего вращения, т. е. это означает, что новая конформация сывороточного альбумина является рыхлой, гибкой структурой. [c.512]


    Определение коэффициента поступательного трения f при измерениях диффузии, рассмотренное в предыдущей главе, основано на том, что в термодинамически неравновесной системе возникает движущая сила, равная градиенту химического потенциала растворенного вещества (или осмотическому градиенту [c.421]

    При определении молекулярных весов результаты измерения диффузии чаще всего используют в сочетании с данными другого какого-либо гидродинамического метода (например, измерения скорости седиментации в ультрацентрифуге). Это позволяет исключить коэффициент трения и таким образом рассчитать молекулярный вес (разд. 2 гл. X). [c.175]

    Наиболее важное использование седиментации в течение последних 30 лет заключается в определении молекулярных весов при помощи совместного измерения коэффициентов седиментации и диффузии. Если 3 я О измерены в растворах одинакового состава, то в обоих случаях будет один и тот же коэффициент трения, так что для двух компонентной системы или для систем, которые ведут себя подобно двух компонентным системам, можно скомбинировать уравнения (22-5) и (21-8), что дает  [c.436]

    Нам остается выбрать между двумя возможными структурами, приведенными в табл. 17 и 22 для молекул с высокими значениями [л и ///мин., т. е. нужно решить, образуют ли эти молекулы в растворах хаотически скрученные цепи или они являются тонкими палочками. Чтобы разрешить этот вопрос, необходимо сравнить результаты измерений, проведенных несколькими экспериментальными методами для одних и тех же молекул. До сих пор в этой книге рассматривались четыре такие экспериментальные величины термодинамический второй вириальный коэффициент В (раздел 12) радиус инерции Яд, определенный по рассеянию света или рентгеноструктурным методом (раздел 18) коэффициент трения (т. е. или я ) и характеристическая вязкость. (Еще одной величиной является коэффициент вращательной диффузии, описанный в разделе 25.) Из всех этих параметров второй вириальный коэффициент В является слишком чувствительным к взаимодействию растворителя с растворенным веществом, в связи с чем он не может быть надежной мерой конформации и обычно используется в последнюю очередь. Откладывая обсуждение коэффи- [c.453]

    Во-вторых, с помощью физико-химических методов, применимых. к белковым растворам, можно установить молекулярный вес. Он может быть определен несколькими различными приемами, при условии, если материал монодисперсен. К таким приемам относятся методы измерения осмотического давления, светорассеяния, седиментационного равновесия и измерения скорости седиментации и диффузии. Все эти приемы основаны на различных принципах и часто дают не вполне совпадающие результаты. Это объясняется тем, что получаемые данные зависят не только от размеров и массы, но и от. электрического заряда, формы и степени гидратации белковых молекул. При измерении скорости движения частиц (например, скорости диффузии или скорости седиментации) хорошие результаты получаются только для тех молекул, форма которых близка к шарообразной, ибо они ведут себя в соответствии с изученными закономерностями. Отклонение от сферической формы (фибриллярные белки) и гидратация молекул приводят к различным ошибкам, так как движение молекул замедляется в результате увеличения коэффициента трения или эффективного размера частиц. [c.128]


    Исследование свободной диффузии макромолекул в растворах [5, гл. V] —непосредственный способ измерения коэффициентов поступательного трения его достаточно широко используют для изучения конформаций изолированных макромолекул, определения молекулярных масс и неоднородности полимеров. Классическим является определение коэф )ициентов диффузии по скорости расплывания первоначально узкой концентрационной гра- [c.34]

    Физико-химические методы, используемые для определения молекулярного веса белков, основаны на различных принципах и иногда дают сильно отличающиеся друг от друга результаты, толкование которых часто затруднительно и даже не всегда возможно. Это связано с тем, что результаты измерений зависят не только от величины и массы белковых молекул, но также и от их электрического заряда и формы. Последний фактор, в частности, имеет существенное значение в тех случаях, когда определяют скорость движения молекул, например скорость диффузии или скорость оседания в гравитационном поле. В то время как шарообразные молекулы в подобного рода опытах ведут себя закономерно, удлиненные нитевидные молекулы фибриллярных белков обнаруживают аномальное поведение. Отклонение от шарообразной формы приводит к увеличению коэффициента трения и соответственно — к снижению скорости диффузии. При определениях в концентрированных растворах, содержащих нитевидные молекулы, возникают и другие осложнения, зависящие от взаимных столкновений и временных связей молекул друг с другом. На результаты, полученные динамическими методами, влияет также гидратация частиц, поскольку движение молекул через растворитель будет замедлено, если поперечник их увеличится за счет гидратации. [c.48]

    ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ДИФФУЗИИ ПО ИЗМЕРЕНИЯМ ВНУТРЕННЕГО ТРЕНИЯ [c.422]

    Вследствие важности величины Со, определяющей шкалу времени для всех вязкоупругих сво1"1ств в переходной зоне, желательно получить относящуюся к ней информацию не голько из механических, но и из других типов физических измеренн . В настоящее время, по-видплюму, определение Со для самих полимерных молекул возможно только с помощью механических методов. Однако путем измерений диффузии можно получить трансляционный коэффициент трения для растворенных в поли.мере малых посторонних молекул, размеры которых близки к размера.м. мономерного звена. [c.302]

    В ГЛ. 11 говорилось, что молекулярную массу (М) можно опреде- 1ить по результатам измерения коэффициента седиментации (з) и коэффициента трения (/). Прямое определение / представляет трудную задачу к счастью, эти сложности можно обойти с помощью измерения коэффициента диффузии О, [c.355]

    Если молекулы не имеют сферической формы, то коэффициент седиментации сам по себе нельзя использовать для определения молекулярного веса оседающего вещества. Однако при измерении и коэффициента седиментации и коэффициента диффузии молекулярный вес вещества можно вычислить, не делая никаких предположений о форме молекул. Уравнение, на котором основывается это вычисление, может быть выведено путем приравнивания центробежной силы, действующей на частицу, силе трения (где / — коэффициент трения молекулы, а б.г1й1 — скорость седиментации). Центробежная сила, действующая на частицу с массой т и парциальным удельным объемом V, суспендированную в среде с плотностью р, равна [c.614]

    При анализе электрохимического наводороживания используют методы, основанные на определении скорости проникновения водорода через тонкую мембрану, изготовленную из металла с высоким коэффициентом диффузии водорода палладия, армко-железа и др. 46,55-57J. Для регистрации количества водорода, диффундирующего через мембрану, используют различные способы. Простейшим является измерение увеличения давления или объема газа в регистрирующей части ячейки. В устройстве для определения наводороживания металла при трении в кислоте 57J измерение потока водорода проводят при непрерывной откачке системы со стороны выхода мембраны с помощью омегатронного измерителя парциального давления. [c.25]

    Изменения активности некоторых белков коррелируются, как правило, с изменениями ряда физических свойств. Так, изменение формы белковой молекулы можно установить по изменению некоторых гидродинамических характеристик (например, коэффициента трения, инкремента вязкости), по изменению светорассеяния, поверхностных свойств, диффузии через полупроницаемые мембраны и скорости седиментации [90]. Изменения термодинамических свойств (энтальпии и энтропии), объема, растворимости, оптического вращения, поглощения в инфракрасной области, дифракции электронов, а также некоторые другие характеристики, приведенные Каузманом [90], используются для Оцейки изменений формы белковых молекул. Большинство этих измерений было проведено па макромолекулах неизвестной структуры, для которых не была установлена последовательность аминокислотных остатков. В настоящее время благодаря усовершенствованию методов деградации белков, аналитического определения Концевых групп, методов разделения и идентификации отдельных фрагментов можно успешно изучать белки с молекулярным весом порядка 20 ООО. Хотя эта работа еще не достигла молекулярного уровня, тем не менее она дает возможность лучше использовать значения физических констант белковой молекулы известной структуры для объяснения механизма взаимодействия фермента с субстратом. Структура такого белка, как фиброин (белковое вещество натурального шелка), в настоящее время хорошо изучена благодаря сравнению рентгенограммы и ИК-спектров нативного волокна с рентгенограммами [35, 38, 108, 140] и ИК-спектрами [168] небольших фрагментов белка известной структуры, полученных при деградации, а также синтетитегаихпмшнептидо [c.386]


    Из значений коэффициентов диффузии и седиментационных констант можно определить размеры молекул белков, степень гомогенности белковых растворов, а также степень гидратации с учетом возможных отклонений формы от сферической. О седиментационных константах мы будем говорить в следующем разделе. Отношение коэффициента трения для несферических частиц / к коэффициенту трения для частиц сферической формы /о называют коэффициентом диссимметрии (определение этих двух коэффициентов трения было дано в предыдущем разделе, посвященном электрофорезу). Коэффициент диссиметрии можно определить, исходя из любых данных, касающихся ка-жуи ейся формы молекул, например из данных по вязкости или по двойному лучепреломлению в потоке, а также на основании измерений диэлектрической дисперсии. Соотношение между коэффициентом диффузии, мол. весом и коэффициентом диссимметрии может быть выражено уравнением [c.408]

    Наиболее прямой путь определения молекулярного веса гидродинамическими методами лежит в сочетан1ш результатов измерения скорости седиментации и скорости диффузии. Константа седиментации s и коэффициент диффузии D обратно пропорциональны коэффициенту трения нри поступательном движении /. Они не связаны ни с какими другими параметрами, кроме /, который в свою очередь зависит от конформации молекулы. Таким образом, отношение s к Z3 в хорошо известном уравнении Сведберга непосредственно определяет молекулярный вес без каких бы то пи было допущений, касающихся пространственной конфигурации молекул. К сожалению, коэффициенты диффузии для препаратов нативпой ДНК настолько малы, что определение пх неточно и требует большой затраты времени. Кроме того, для ДНК еще не установлен характер зависимости D от концептращш. По этой причине за последнее время опубликовано очень мало работ, посвященных изучению диффузии ДНК. Наиболее обширное исследование Ито и Ватанабе [56] охватывает область молекулярных весов от 500 ООО до 6 ООО ООО. Современными методами вряд ли можно получить коэффициенты диффузии для препаратов с более высоким молекулярным весом. [c.218]


Смотреть страницы где упоминается термин Трения коэффициент определение по измерению диффузии: [c.10]    [c.418]    [c.133]    [c.133]   
Биофизическая химия Т.2 (1984) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузии коэффициент определение

Диффузия коэффициент диффузии

Диффузия, измерение

Коэффициент диффузии

Коэффициент измерение

Коэффициент определение

Коэффициент определение по коэффициентам

Коэффициент трения

определение коэффициенто



© 2025 chem21.info Реклама на сайте