Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Субстраты механизм взаимодействия с ферментом

    Поскольку индольная флуоресценция триптофана наиболее интенсивна среди природных аминокислот, она в основном ответственна за флуоресценцию большинства белков и находит различные применения в биологии и медицине, например в качестве пробы для выяснения структурных и конформационных изменений в белках, оценки совместимости антител в иммунологии и выяснения механизма действия ферментов [136, в, 15]. Примером, в частности, может служить гидролаза — лизоцим, содержащий шесть остатков триптофана, в том числе три, по-видимому, ассоциированы с активным участком. Присоединение субстрата приводит к голубому смещению в эмиссионном спектре на 10 нм, от 335 к 325 нм, сопровождающемуся повышением квантового выхода. Такое поведение интерпретируется как указание на взаимодействие между карбоксильными и индольными группами активного центра, которое исчезает при присоединении к субстрату [16]. [c.494]


    Одним из характерных проявлений жизни является удивительная способность живых организмов кинетически регулировать химические реакции, подавляя стремление к достижению термодинамического равновесия. Ферментативная кинетика занимается исследованием закономерностей влияния химической природы реагирующих веществ (ферментов, субстратов) и условий их взаимодействия (концентрация, pH среды, температуры, присутствие активаторов или ингибиторов) на скорость ферментативной реакции. Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать выяснению молекулярного механизма действия фермента. [c.134]

    Если две различные молекулы расположены достаточно близко, они могут влиять на флуоресценцию друг друга. Одна из них, например, может поглощать излучение флуоресценции другой, свидетельствуя о довольно эффективной миграции энергии от одной молекулы к другой при облучении молекулярного комплекса. Такое взаимодействие может происходить между ароматическими аминокислотами, в ферментах и флуоресцирующих коферментах. Следовательно, можно определять и расстояние между этими молекулами. Кроме того, излучаемый отдельными молекулами данного вещества поток энергии определенным образом ориентирован по отношению к излучающей молекуле. Поэтому флуоресценция твердых тел сильно поляризована. В жидких невязких растворителях поляризация флуоресценции небольших молекул обычно мала, так как вследствие броуновского движения молекулы быстро меняют свое положение. Однако у больших молекул, таких, как белки, даже в жидких растворителях наблюдается менее интенсивное броуновское движение за время жизни возбужденного состояния они мало меняют свое положение, и поэтому их флуоресценция сильно поляризована. У флуоресцирующих групп, находящихся внутри белковой молекулы или соединенных с белком в виде комплексов фермент — кофермент или фермент — субстрат, также обнаруживается поляризация флуоресценции. Степень поляризации флуоресценции таких комплексов и влияние на нее различных факторов дают информацию о механизме действия фермента. Все это представляет ценность для анализа не только собственно ферментов, но и вообще всех белков. [c.178]

    Электростатические взаимодействия вносят вклад в специфичность трипсина к остаткам Lys и Arg. Трипсин [244, 245, 536] связывает свои субстраты существенно тем же способом, что и химотрипсин. Однако трипсин специфичен к положительно заряженным остаткам субстрата боковая цепь Lys или Arg электростатически связывается с остатком аспарагиновой кислоты на дне связывающего кармана фермента. Кристаллографические исследования комплексов трипсина и белковых ингибиторов трипсина [269, 632] показали, что способ связывания очень сходен с образованием комплекса сериновая протеаза — субстрат. Очевидно, ингибитор точно-воспроизводит субстрат. Механизм, ведущий к расщеплению субстрата трипсином и к стабилизации комплекса трипсин — ингибитор-[269, 536], рассматривается в разд. 11.2. [c.248]


    В результате изучения взаимодействия ферментов с субстратами и ингибиторами удалось выяснить ряд важных вопросов, касающихся механизма ферментативных реакций. Детальное рассмотрение всех этих исследований увело бы нас слишком в сторону. Поэтому мы остановимся только на некоторых выводах, имеющих непосредственное отношение к предмету этой книги. Прежде всего рассмотрим свойства самого фермента. Активность фермента, как правило, зависит от целостности его третичной структуры. Под действием денатурирующих агентов, изменяющих конформацию фермента, его активность либо уменьшается, либо исчезает полностью. По меньшей мере в одном случае — для рибонуклеазы — установлено, что связывание фермента с субстратом способствует сохранению его конформации даже в присутствии агентов, которые в отсутствие субстрата вызывают денатурацию. Вместе с тем не вся первичная структура необходима для обеспечения активности. Например, фермент папаин, по своим свойствам подобный протеолитическим ферментам, сохраняет свою активность при отщеплении 3/5 его молекулы. Активный фрагмент папаина сохраняет чувствительность к действию денатурирующих агентов, и это свидетельствует о том, что для обеспечения активности необходима определенная третичная структура. В свете этих данных вЪз-никает вопрос почему молекулы ферментов так велики  [c.395]

    Механизмы метаболических процессов очень напоминают механизмы реакций, проводимых в лабораторных условиях, с тем отличием, что если в лаборатории часто работают прн повышенных температурах и давлении, с безводными (часто ядовитыми) растворителями, с сильными кислотами и основаниями и с нетипичными для природы реагентами, то метаболические процессы протекают при весьма умеренных условиях в разбавленных водных растворах в интервале температур от 20 до 40 °С при pH от 6 до 8 и с участием чрезвычайно эффективных катализаторов — ферментов. Можно сказать, что каждая ступень метаболического процесса катализируется специфическим ферментом. Ферменты представляют собой вещества белковой природы их каталитическое действие оказывает влияние не на положение равновесия реакции, а на ее скорость, которая очень сильно увеличивается — часто на несколько порядков по сравнению со скоростью реакции, проводимой в лабораторных условиях. В состав некоторых ферментов входят коферменты, имеющие небелковый характер. Подвергающийся превращению субстрат сначала связывается с активным центром фермента, поблизости от которого расположен кофер-мент. При этом реагирующая группа субстрата и кофермент так сориентированы в пространстве, что реакция между ними протекает практически мгновенно. Затем прореагировавший субстрат отделяется от активного центра фермента, а измененный кофермент регенерируется под действием другого субстрата. Если в ферменте нет кофермента, то два субстрата непосредственно взаимодействуют в активном центре. [c.180]

    Мы начали эту часть, решив попытаться выяснить механизм действия ферментов как проблему механизма любой другой органической реакции. Каталитические механизмы, используемые ферментами, можно, безусловно, рассматривать в терминах взаимодействия небольшого числа функциональных групп внутри фермент-субстратного комплекса. Однако немалую трудность представляет выяснение того, какие именно группы фермента участвуют в катализе. Белок содержит множество функциональных групп, избирательно реагирующих с большинством реагентов. Для того, чтобы специфически затронуть группы активного центра, можно полагаться только на реакции с субстратами. Поэтому первым важным шагом в изучении специфической ферментативной реакции является идентификация функциональных групп, вовлеченных в каталитический механизм. [c.477]

    Кирквуд считал механизм флуктуационного взаимодействия фермента и субстрата универсальным и определяющим явление ферментативной активности в целом [97, 98, 100]. Все изложенное показывает, что за ферментативную активность ответствен ряд факторов, и здесь весьма важны конформацнонные явления. Теория Кирквуда не решает проблему. Вместе с тем и механизм Михаэлиса, и механизм Кирквуда отражают реальные свойства полиэлектролитной системы. Остается неясным, в какой мере, так как отсутствуют строгие количественные оценки и получить их трудно. [c.397]

    Механизмы ферментативных реакций чрезвычайно сложны, причем трудности в их изучении усугубляются отсутствием точных сведений о структуре большинства ферментов. В огромной полимерной молекуле фермента имеется несколько различных активных центров, которые могут взаимодействовать с молекулами исходного вещества (или субстрата, как принято его называть в учении 9 катализе). Ранее считалось, что высокая специфичность действия фермента объясняется точным стереохимическим и электронным соответствием активных центров ферментов к молекул субстрата - так называемая концепция ключа и замка . Позднее оказалось, что механизм действия ферментов более сложен и гибок. Субстрат S первоначально образует с ферментом F комплекс [c.158]


    В окружении различных веществ в клетке ферменты взаимодействуют не только с субстратами. При этом скорость превращения субстратов может увеличиваться (активация фермента) или снижаться (торможение, ингибирование ( рмента). Изучение влияния на активность ферментов различных веществ имеет большое практическое значение, а также очень важно для понимания механизма действия ферментов. Например, действие ряда лекарств обусловлено тем, что они являются ингибиторами ферментов. [c.77]

    Центр тяжести исследований на современном этапе переместился в сторону детального изучения химического строения каждого отдельного фермента и механизма действия ферментов, осуществляющих катализ определенных типов ферментативных реакций. При этом для изучения природы активных центров и их взаимодействия с субстратом впервые стали применяться специально разработанные методы. [c.175]

    В последние годы предприняты попытки применить принцип линейности свободных энергий для изучения свойств и механизмов реакций отдельных биохимических систем и даже целых живых организмов. Обнаруженные здесь корреляции позволяют судить о механизмах биохимических реакций, характере взаимодействия фермента и субстрата, свойствах фермент-субстратного комплекса, поведении физиологически важных веществ антибиотиков, инсектицидов, гербицидов и т. п. [c.361]

    Попытка обобщить данный материал сделана в настоящей книге, которая представляет собой логическое продолжение первой части, опубликованной ранее отдельным томом и посвященной анализу специфичности и кинетических аспектов действия ферментов на относительно простые субстраты, такие как алифатические и ароматические спирты и альдегиды, производные карбоновых кислот, замещенные аминокислоты и их производные (не выше ди- или три-пептидов). Главное внимание в первой части книги уделялось характеру фермент-субстрат ных взаимодействий на достаточно ограниченных участках активного центра и кинетическим проявлениям этих взаимодействий. В основе первой части книги лежит экспериментальный материал, полученный при изучении специфичности, кинетики и механизмов действия цинк- и кобальткарбоксипеп-тидазы, химотрипсина и трипсина из поджелудочной железы быка, алкогольде-гидрогепаз нз печени человека и лошади и пенициллинамидазы бактериального происхождения. Итогом первой части книги явились обобщение и формулировка кинетико-термодинамических принципов субстратной специфичности ферментативного катализа. [c.4]

    Рассмотренный механизм взаимодействия ингибитора с ферментом во многом напоминает механизм ферментативного расщепления субстрата. [c.81]

    Для понимания механизма действия ферментов большое значе ние имеет исследование кинетики торможения ферментов высокими концентрациями субстрата. Как уже говорилось выше, при взаимодействии фермента с субстратом происходит образование сразу нескольких связей между реакционными центрами в молекуле субстрата и фермента. Именно такой мультиплетный характер взаимодействия лежит в основе субстратной специфичности ферментов и их высокой активности. [c.90]

    На этом основании было высказано предположение, что одним из факторов, определяющих взаимодействие фермента с субстратом при образовании комплекса Михаэлиса, служит ионная реакция между катионным центром ацетилхолина и анионным центром на активной поверхности фермента. Такое взаимодействие должно быть первичным в реакции фермента с субстратом, поскольку ионные силы проявляются на большем расстоянии, чем другие виды химических взаимодействий. Образованию ионной связи приписывали лишь якорную функцию, в результате реализации которой молекула субстрата ориентируется на поверхности фермента, чем значительно облегчается образование других необходимых химических связей (уже ближнего действия) с группировками активного центра фермента. В связи с этим исследованию кинетики и механизма ингибирования холинэстераз ионами тетраалкиламмония было уделено особое внимание. Задача этих исследований — изучение особенностей строения и роли анионного центра холинэстераз в каталитическом действии указанных ферментов. [c.185]

    Рентгеноструктурные исследования выявили еще одну важную особенность механизма действия ферментов, а именно возникновение конформационных изменений в молекуле фермента в процессе присоединения к ней субстрата и последующего их взаимодействия. Яркий пример этого-гексокиназа (разд. 9-3), ката- [c.256]

    В последние годы исследованию окружения аминокислотных остатков в белках и их доступности для реагентов уделяется особенно много внимания, что объясняется многими причинами. Во-первых, познание реакционной способности каждого аминокислотного остатка в связи с непосредственным окружением приведет к пониманию различных химических свойств белков и ферментов. Например, механизм действия ферментов можно описать с точки зрения сродства и повышенной реакционной способности аминокислотных остатков активного центра по отношению к субстрату. Во-вторых, доступность аминокислотных остатков действию реагентов зависит от конформационных изменений белков, вызываемых сменой pH, температуры, ионной силы, взаимодействием с субстратом и т. д. Изучая доступность для реагентов отдельных остатков в различных условиях, можно делать выводы о структуре нативных белков. В-третьих, молярные доли остатков в различных состояниях обычно определяют путем измерения кругового дихроизма (дисперсии оптического вращения), параметров ионизации, спектральных смещений при образовании водородных связей или других изменений в окру- [c.344]

    Теория Михаэлиса и Ментена оказалась чрезвычайно плодотворной для выяснения механизма действия ферментов. Основой каталитической ферментной реакции является обратимое взаимодействие субстрата и фермента, при котором образуется их комплекс, распадающийся затем с образованием продуктов реакции и освобождением молекулы фермента. Эта, на первый взгляд такая простая, гипотеза была высказана в самом начале века А. Брауном, затем В. Анри (1902) и лишь позднее детально развита Михаэлисом и Ментеном (1913), а также Бриггсом и Холденом (1925). [c.52]

    Механизм действия ферментов связан со снижением энергии активации взаимодействующих молекул в результате образования ферментно-субстратного комплекса. Последовательность процессов, протекающих при ферментативном катализе, можно записать в виде схемы фермент 4- субстрат ферментно-субстратный комплекс продукт реакции -Ь фермент. Для ферментов характерно значительное снижение энергии активации по сравнению с обычными катализаторами. Так, для разложения перекиси водорода на кислород и воду требуется энергия активации 75,2 кДж/моль. В присутствии катализатора (коллоидной платины) она снижается до 50,2 кДж/моль, а фермент каталаза ее уменьшает до [c.211]

    Фермент инвертаза катализирует превращение дисахарида сахарозы в инвертированный сахар. Когда концентрация инверта-зы равна 3 10 " моль/л и концентрация сахарозы 0,01 моль/л, инвертированный сахар образуется со скоростью 2-10 моль-л с . При удвоении концентрации сахара скорость образования инвертированного сахара также удваивается. Основываясь на известных вам представлениях о модели взаимодействия фермент—субстрат, оцените, насколько велика доля фермента, связанного в комплекс. Поясните свой ответ. Добавление другого сахара инозита замедляет образование инвертированного сахара. Предложите механизм этого явления, [c.470]

    В качестве промежуточного соединения (таков, в частности, механизм действия фосфорилазы сахарозы). В механизме первого типа, или механизме однотактного замещения, субстраты связываются на ферменте в необходимой близости друг от друга что обеспечивает возможность реакции между ними (фиг. 18). Таким образом, происходит одна реакция — однотактное замещение. Механизм двухтактного замещения, или образования замещенной формы фермента, предусматривает, напротив, сначала взаимодействие фермента с одним из субстратов с образованием замещенной формы фермента и одного из продуктов реакции. Далее замещенная форма фермента принимает участие во второй реакции замещения с другим субстратом, что приводит к регенерации фермента и образованию второго конечного продукта реакции. [c.122]

    Следует также заметить, что эта модель не предусматривает никакого специального физического механизма взаимодействия центров. Ее авторы считают, что оно может быть объяснено на основе гипотезы принудительного контакта Кошланда, согласно которой образование комплекса с одной из молекул субстрата приводит к конформационным изменениям фермента, которые каким-то образом повышают его сродство к следующим молекулам субстрата. Конформационные изменения лежат в основе и других, более сложных моделей регуляторной кинетики, рассматриваемых ниже. [c.239]

    Выдерживание атак, в свою очередь, может означать или повышенную прочность, или способность действовать на атакующие молекулы как катализатор. Повышенная прочность не составляет атрибута жизненно важных веществ, участвующих в процессах обмена и обновления. Наоборот, каталитические функции присущи огромному большинству (если не всем) белков. Вероятно, развитие белковых цепей шло таким путем, что каждое новое усложнение структуры соответствовало появлению новой каталитической функции, дающей возникшему веществу химические преимущества в борьбе с влияниями среды. Механизм работы ферментов основан на взаимодействии групп молекул субстрата и активных групп макромолекул фермента. Первоначальное представление о жесткой структуре активного центра биокатализатора сменилось воззрениями, основанными на работах Кошланда [10] для этих воззрений характерно допущение известной гибкости фрагментов активного центра. Фиксируясь на ферментном белке, субстрат изменяет строение белка и притом так, что активные группы, смещаясь на величину порядка ангстрема или более, располагаются относительно молекулы субстрата наиболее выгодным образом затем происходит собственно каталитический акт, завершающийся образованием продуктов реакции и восстановлением прежней геометрической структуры активного центра. Фермент, следовательно, действует не как шаблон, а скорее как маленькая машина. [c.173]

    НЫМИ катионогенными и анионогенными группами. В отличие от этого кислотный гидролиз сывороточного альбумина приводит к образованию фрагментов, проявляющих иные сорбционные свойства по сравнению со свойствами исходного белка. Анализ взаимодействия белков с ионообменными смолами весьма существен для развития представления о механизме межмолекулярных взаимодействий белков с другими электролитами и полиэлектролитами. Так, например, взаимодействие фермент—субстрат в том случае, когда субстрат является электролитом, также должно определяться и расположением ионогенных заряженных групп в обеих молекулах. [c.196]

    Представляет интерес ответ на вопрос, по какому механизму протекает инактивация фермента. Протекает ли инактивация мономолекулярно через свободную форму фермента (механизм I), фермент-субстратный комплекс (механизм П), бимолекулярно через взаимодействие с субстратом (механизм П1) или продуктом реакции (механизм [c.125]

    В число основных факторов, определяющих начальную скорость ферментативной реакции, входят концентрация фермента и субстрата, pH и температура, наличие активаторов и ингибиторов, причем концентрация субстрата является одним из наиболее важных. График зависимости между начальной скоростью и концентрацией субстрата выражается в виде ветви равнобочной гиперболы. Краеугольным камнем ферментативной кинетики является теория Михаэлиса-Ментен о механизме взаимодействия фермента и субстрата через образование про.межуточного фермент-субстратного комплекса, что является исходным моментом самых современных концепций. Теория исходила из факта, что равновесие между ферментом и субстратом достигается быстрее, чем разрушается фермент-субстратный комплекс. Однако анализ, проведенный Бригсом и Холдейном, показал, что в любой момент реакции скорости образования и распада фермент-субстратного комплекса практически равны, то есть достигается стационарное состояние, в котором концентрация промежуточного соединения постоянна. На основании этого было предложено уравнение, выполняемое для многих механизмов реакций, катализируемых ферментами, которое на- [c.203]

    Изменения активности некоторых белков коррелируются, как правило, с изменениями ряда физических свойств. Так, изменение формы белковой молекулы можно установить по изменению некоторых гидродинамических характеристик (например, коэффициента трения, инкремента вязкости), по изменению светорассеяния, поверхностных свойств, диффузии через полупроницаемые мембраны и скорости седиментации [90]. Изменения термодинамических свойств (энтальпии и энтропии), объема, растворимости, оптического вращения, поглощения в инфракрасной области, дифракции электронов, а также некоторые другие характеристики, приведенные Каузманом [90], используются для Оцейки изменений формы белковых молекул. Большинство этих измерений было проведено па макромолекулах неизвестной структуры, для которых не была установлена последовательность аминокислотных остатков. В настоящее время благодаря усовершенствованию методов деградации белков, аналитического определения Концевых групп, методов разделения и идентификации отдельных фрагментов можно успешно изучать белки с молекулярным весом порядка 20 ООО. Хотя эта работа еще не достигла молекулярного уровня, тем не менее она дает возможность лучше использовать значения физических констант белковой молекулы известной структуры для объяснения механизма взаимодействия фермента с субстратом. Структура такого белка, как фиброин (белковое вещество натурального шелка), в настоящее время хорошо изучена благодаря сравнению рентгенограммы и ИК-спектров нативного волокна с рентгенограммами [35, 38, 108, 140] и ИК-спектрами [168] небольших фрагментов белка известной структуры, полученных при деградации, а также синтетитегаихпмшнептидо [c.386]

    Согласно современным представлениям, которые сформулированы в работах В. Анри, Л. Михаэлиса, М. Ментена и других ученых, механизм взаимодействия ферментов с субстратами связан с образованием нестойких ферментсубстратных комплексов (ЕЗ). В процессе образования фермент- [c.96]

    Наблюдаемому эффекту [уравнение (4.39)] трудно найти объяснение с помощью простой экстракционной модели (схема 4.18), где механизм гидрофобного фермент-субстратного взаимодействия представляет собой лишь перенос субстратного фрагмента Н из воды в невод-ную среду и, следовательно, выигрыш свободной энергии не может превысить величину АОэкстр-, Очевидно, механизм гидрофобного фермент-субстратного взаимодействия более сложный, чем (4.18). По-видимому, гидрофобная полость в активном центре фермента контактирует в свободном состоянии с водой и образование комплекса с субстратом КХ полностью или частично (в зависимости от размеров субстратной группы К) экранирует [c.154]

    По механизму взаимодействия сорбента и сорбата можно выделить несколько видов хроматофафии распределительнся хроматография основана на различии в растворимости разделяемых веществ в неподвижной фазе (газожидкостная матофафия) или на различии в растворимости веществ в подвижной и неподвижной жидких фазах ионообменная хроматография — на разной способности веществ к ионному обмену адсорбционная хроматография — на различии в адсорбируемости веществ твердым сорбентом эксклюзионная хроматография — на различии в размерах и формах молекул разделяемых веществ, аффинная хроматография — на специфических взаимодействиях, характерных дпя некоторых биологических и биохимических процессов. Существуют пары веществ, реагирующих в растворах с высокой избирательностью, например антитело и антиген, фермент и его субстрат или ингибитор, гормон и соответствующий рецептор, и т. п. Если одно из соединений пары удерживается ковалентной связью на [c.267]

    Преобразуемая группа субстрата может быть дестабилизирована в тот момент, когда субстрат присоединяется к ферменту энергия, затрачивающаяся на такую дестабилизацию [631], черпается из общей связывающей энергии. Механизмы дестабилизации могут включать замену растворителя, взаимодействия заряд — заряд н напряжения валентных связей и валентных углов. Дестабилизация может быть ослаблена в переходном состоянии, что означает снижение энергии активации, необходимой для достижения переходного состояния. [c.278]

    Одна из наиболее ранних теорий, на основании которой пытг,-лись объяснить природу взаимодействия фермента и субстрата и механизм биологического катализа, была предложена В. Бейлисом [42] в 1906 г. По представлениям Бейлиса, ускорение реакции в присутствии фермента должно было вызываться увеличением активной массы благодаря физической адсорбции ферментом реагируюш их веществ и происходящем в результате этого их концентрировании на поверхности фермента. Однако теория Бейлиса была отвергнута даже без значительной экспериментальной проверки, хотя идея о сгущении реагентов в порах или на поверхности ферментных образований часто обсуждалась в литературе и впоследствии. Основная причина, по которой отказались от теории Бейлиса, что при ее помощи невозможно было объяснить специфичность действия ферментов, хотя сам Бейлис не считал это условие совершенно обязательным. [c.171]

    Полифункциональность ферментативного катализа объясняет, как нам представляется, значительный выигрыш и в энергии активации. Наличие в активном центре фермента и на определенном расстоянии друг от друга группировок, характеризующихся электрон-нодонорными и электронноакцепторными свойствами, приводит к тому, что при взаимодействии с соответствующими группировками субстратов образуются стабилизированные комплексы, и каталитическая реакция происходит внутримолекулярно, нередко по пуш-пульному механизму. Естественно, такие реакции требуют значительно меньшей энергии активации. В этом отношении механизмы действия ферментов в какой-то мере сходны с механизмами действия так называемых комплексных (координационно-ионных) катализаторов, приобретающих в последние годы важное значение в теории и практике гомогенного катализа. [c.29]

    Неясными и противоречивыми остаются некоторые стороны механизма взаимодействия фосфорорганических ингибиторов с холинэстеразами в присутствии субстрата. Известно, что при реакции свободных ферментов с субстратами и ингибиторами образуются в первом случае ацетилированные, во втором случае фосфо-рилированные производные с участием одной и той же функцио нальной группы — гидроксила серина. Следовательно, взаимодействие ингибитора с ацилированным ферментом, постулируемое в цитированной работе, должно идти совсем по иному механизму, чем общепринятый. Доказательства существования такого мехЗ низма пока нет. В частности, если фосфорилироваться может гид-роке ил тирозина, то предполагается необходимость последующего переноса фосфорильного остатка на гидроксил серина (после де-ацилирования фермента), но это мало вероятно и нуждается в доказательствах. [c.230]

    Антагонизм лекарственных препаратов можно объяснить, предположив, что вещества, вызывающие ответную реакцию ткани, т. е. агонисты, вызывают сокращение или расслабление, взаимодействуя с характерными молекулярными структурами или рецепторами внутри или вне клетки. Кроме того, предполагают, что каждый агонист имеет свой специфический рецептор. Эта комбинация агонист — рецептор вызывает реакцию клетки, механизм которой не совсем понятен. 1Г1редполагают также, что каждый а нтагонист специфически соединяется с рецептором, связанным с агонистом. Торможение агониста лекарством-антагонистом может быть либо конкурентным, либо неконкурентным, аналогично ферментному торможению. Специфичность и направление метаболизма можно удовлетворительно объяснить исходя из действия ферментов. Такие реакции клетки, как расслабление или сокращение, могут быть объяснены степенью активации рецепторов. Механизм действия ферментов состоит в образовании комплекса фермент — субстрат, в котором субстрат специфически связан с комплементарной областью молекулы фермента затем этот комплекс может превращаться в фермент и продукты реакции. Как предполагают, точно так же соединение агониста с рецептором приводит сначала к механической или метаболической реакции. Также существует частичная аналогия между ферментами и рецепторами, хотя рецепторы не обладают ферментативной активностью по отношению к своим агонистам (Белло [44]). В противоположность ферментам существование рецепторов все еще не доказано, а рецепторная теория во многом обязана концепциям энзимологии. Очень сложно объяснить, каким образом комбинация агонист — рецептор вызывает реакцию клетки. [c.361]

    У всех перечисленных ферментов гидроксильная группа серинового остатка является местом связывания ацильной группы. При изучении характера взаимодействия специфического парализатора ДФФ и химотрипсина были получены сведения о механизме действия активного центра последнего было найдено, что ацилфермент образуется как необходимый промежуточный продукт при взаимодействии фермента с субстратом. При действии химотрипсина, например на п-нитрофенилацетат, образуется ацильное производное фермента — ацетил-химотрипсин, а п-нит-рофенол освобождается. Поскольку он, в отличие от своего ацетата, интенсивно окрашен, то эту реакцию можно было детально исследовать фотометрически. [c.83]

    Если экспериментально обнаружено, что вабл зависит от концентрации субстрата, то механизм мономолекулярной инактивации фермента можно исключить из рассмотрения. Так, например, из данных, приведенных на рис. 49, следует, что механизм инактивации арилсульфатазы протекает с участием фермент-субст-рахного комплекса или при бимолекулярном взаимодействии фермента с субстратом, а не через свободную форму фермента. С другой стороны, экспериментальное обнаружение независимости набл от 5о не является однозначным доказательством справедливости механизма I, поскольку такая зависимость может иметь место для механизмов II и III в условиях большого избытка. субстрата по сравнению с константой Михаэлиса. В этих условиях принципиально важным является определение параметров Ут Кт. [c.121]


Смотреть страницы где упоминается термин Субстраты механизм взаимодействия с ферментом: [c.164]    [c.5]    [c.49]    [c.432]    [c.196]    [c.26]    [c.132]    [c.84]    [c.357]   
Механизмы биоорганических реакций (1970) -- [ c.241 , c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Субстрат

Фермент субстрат



© 2025 chem21.info Реклама на сайте