Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тиогликолевая определение

    Мешающие влияния. А. Для аэрозолей. Определению мешают растворимые аэрозоли щелочей с 4 мкг и более в пересчете на ион гидроксила в 5 мл сульфат окисного железа. Аэрозоли летучих галоидопроизводных карбоновых кислот жирного ряда (хлорпропионовая), аэрозоли летучих тиопроизводных карбоновых кислот жирного ряда (тиогликолевая). Определению не мешают этанол, аэрозоли, не растворимые в воде, ароматические монокарбоновые кислоты бензольного ряда. [c.540]


    Было установлено - что в случае использования растворителей появляется еще одна возможность уменьшения расхода кислоты — путем повышения ее концентрации. Если обычно в синтезе используют 73%-ную кислоту, то в присутствии растворителей применение даже 85%-ной кислоты не приводит к увеличению доли нежелательных побочных реакций. При работе с такой концентрированной кислотой очень важно соблюдать порядок добавления реагентов, а именно, к смеси фенола, толуола и тиогликолевой кислоты добавлять раздельно (но одновременно) с определенной скоростью серную кислоту и ацетон. Способ позволяет снизить расход кислоты еще вдвое. Например, используя толуол и промотор — тиогликолевую кислоту — при указанном выше соотношении компонентов (кроме количества кислоты, которое берется примерно вдвое меньше), расход серной кислоты составил всего 0,9 моль на 1 моль ацетона (0,4 тяа т дифенилолпропана), а количество отработанной 25%-ной кислоты снизилось до 1,6 m на 1 m дифенилолпропана. Соответственно уменьшению расхода воды на промывку снижается количество фенол содержащих сточных вод — до 1,34 m на 1 т дифенилолпропана. [c.115]

    Работа 6. Определение тиогликолевой кислоты [c.172]

    Определение основано на окислении тиогликолевой кислоты до дисульфида электрогенерированным /2 или до сульфокислоты — электрогенерированным Вгг. При этом протекают следующие реакции  [c.172]

    Большие количества кадмия можно маскировать тиогликолевой кислотой [1053]. В присутствии >0,1 мг свинца или висмута может образоваться осадок в этих случаях рекомендуют нагревать раствор не дольше 3 мин., так как при более продолжительном нагревании возникает помутнение [1053]. В отсутствие тиогликолевой кислоты даже значительные количества свинца не мешают определению алюминия [1053]. Тиогликолевой кислотой можно маскировать до 10% олова [1053]. Следует иметь в виду, что олово и сурьма имеют тенденцию к гидролизу при pH определения алюминия. [c.98]

    Описан ряд методов фотометрического определения алюминия в железных рудах с эриохромцианином R [463, 808, 855]. Определение проводят при pH 6, многие мешающие элементы маскируют с помощью тиогликолевой кислоты [808,855]. На ванадий вводят поправку, для чего готовят раствор как для определения алюминия, но добавляют 2 мл 2,4%-ного раствора NaF, доводят до метки и измеряют оптическую плотность по сравнению с холостой пробой. Значение этой оптической плотности вычитают из оптической плотности анализируемого раствора. [c.196]


    Для определения алюминия в мерную колбу емкостью 100 лл отбирают 10— 20 ли раствора, добавляют 1 ли 10°о-ного раствора тиогликолевой кислоты, [c.213]

    Весовой бензоатный метод определения алюминия после отделения основной массы меди тиогликолевой кислотой дает удовлетворительные результаты, но он более сложен, чем описанный выше оксихинолиновый [5211. [c.215]

    При анализе цинковых сплавов для маскирования мешающих элементов необходимо вводить тиогликолевую кислоту. Методы определения алюминия в медных сплавах с алюминоном и эриохромцианином К можно использовать и для определения его в цинковых сплавах. [c.216]

    Тиогликолевая кислота образует с тяжелыми металлами внутрикомплексные окрашенные соединения. В кислой среде золото, серебро и медь дают устойчивые желтые комплексы. В аммиачной или слабокислой среде образуют комплексы молибден (VI), вольфрам (VI), уран (VI), никель (II), кобальт (II), висмут (III), железо (III) и марганец (II). Применяется для фотометрического определения железа (III) как добавка при определении олова (II) с дитиолом, а также для определения молибдена (VI) и рения (VII). [c.208]

    При фотометрическом определении А1 + с солохромом (эриохромцианином) применяют специальный раствор 10 мл тиогликолевой кислоты смешивают с 800 мл воды и доводят pH раствора до 3,7 добавлением 2 н. раствора гидроксида натрия, контролируя нейтрализацию рН-мет-ром. После этого раствор разбавляют до 1 л. [c.208]

    Известен также полярографический метод определения содержания железа в реакционной смеси в процессе синтеза поликарбоната, основанный на образовании окрашенного комплекса железа с тиогликолевой кислотой [6, с. 75]. Этот метод используют для определения низких концентраций железа (- 5-10 вес. %). [c.50]

    Определение антимикробного действия лекарственного средства. Во избежание неправильной оценки результатов анализа необходимо определить однократно для каждого наименования лекарственного средства, обладает ли оно антимикробным действием. Для этого в две пробирки с 10 мл тиогликолевой среды и в две — с 10 мл среды Сабуро добавляют соответствующее количество исследуемого лекарственного средства (табл. 12) и вносят в каждую пробирку по 0,1 мл микробной взвеси соответствующего тест-штамма, содержащей 1000 клеток в 1 мл. Посевы в тиогликолевой среде инкубируют при температуре от 30 до 35 °С в течение 48 ч, а на среде Сабуро — при температуре от 20 до 25 °С в течение 72 ч. [c.188]

    Определение реиия с тиогликолевой кислотой [c.109]

    Тиогликолевая кислота как реагент на молибден обладает достаточно высокой селективностью ее применяют для обнаружения молибдена [525, 794, 1540] и его фотометрического определения (стр. 238) в различных объектах. Тиогликолевую кислоту используют также при хроматографическом и экстракционном отделении молибдена от ряда элементов ее применяют как восстановитель шестивалентного молибдена в среде 2Ы НС1 при его обнаружении роданидным методом [1088]. [c.71]

    Тиояблочную кислоту применяют для обнаружения [67] и фотометрического определения молибдена [67]. Как реагент тиояблочная кислота примерно равноценна тиогликолевой. [c.75]

    Поэтому молибден можно успешно отделять от ванадия путем селективной сорбции в форме соединения с тиогликолевой кислотой на анионите дауэкс I или II 1580]. Определение ванадия заканчивают фотометрическим методом в виде соединения с тиогликолевой кислотой при pH 4,5—8. [c.131]

    Различные варианты фотометрического определения молибдена при помощи тиогликолевой кислоты [66, 598, 1155, 1172, 1254, 1534, 1538, 1540] дают удовлетворительные результаты. При выполнении определения необходимо контролировать кислотность раствора. Молибден успешно определяли в сталях [66, 1155, 1254, 1540], техническом пероксиде урана [598], магнитных сплавах [1534], сплавах титана [1172], жаростойких сплавах [1540]. [c.238]

    Ганзлик с сотр. изучали кинетику образования дифенилолпропана в среде 72,5%-НОЙ серной кислоты при мольном соотношении фенола к ацетону в исходной смеси 1,78 1. Авторы считали возможным пренебречь побочными процессами и не принимать во внимание обратные превращения, вследствие того что равновесие сильно сдвинуто вправо и реакция практически доходит до конца. Для определения скорости реакции измеряли концентрацию фенола в разные моменты времени. Поскольку в реакцию может вступить только одна молекула ацетона, а фенола — одна или две, обработку полученных данных вели по двум уравнениям — второго и третьего порядка. Оказалось, что экспериментальные результаты соответствуют первому уравнению, т. е. можно заключить, что лимитирующей стадией является бимолекулярная реакция между обоими компонентами — взаимодействие одной молекулы фенола с одной молекулой ацетона полученный карбинол затем быстро реагирует со второй молекулой фенола, образуя дифенилолпропан. Такой механизм наблюдался при добавлении промотора (тиогликолевой кислоты) и без него. [c.84]


    Наиболее широко применяемые фотометрические методы определения железа основаны на реакциях с о-фенантролином, который образует с железом (II) комплексный ион, окрашенный в интенсивно-красный цвет с 2,2 -дипиридилом, дающим с железом (И) красновато-пурпурное окрашивание с салициловой кислотой, дающей с железом (III) в уксуснокислом растворе комплекс с аметисто-фиоле-товым окрашиванием с тиогликолевой (меркаптоуксусной) кислотой, дающей с железом (И) в щелочном растворе (pH 10) краснопурпурное окрашивание с сульфосалициловой кислотой, которая образуете железом (II и III) в аммиачном растворе соединение желтого цвета в кислых растворах сульфосалициловая кислота образует с железом (III) соединение красного цвета. [c.250]

    При определении алюминия в стали Рэй и др. [1102] основную массу железа удаляют экстрагированием эфиром из раствора, 6М по НС1. Остатки железа и некоторые другие элементы удерживают в растворе смесью тиогликолевой кислоты и роданида аммония. Титан и цирконий предварительно отделяют гипофосфитом натрия и бромной водой Сг, V, Мо, 5п, Мп, 2п, N1 и Со в тех количествах, в которых присутствуют в углеродистых сталях, не мешают. По данным авторов, при осаждении А1РО4 при pH 3,7—3,9 не мешают 500-кратные количества Сг, V, Мп, N1 и Со. Отделение от Ре, Сг, V, 5п, Мп, 2п, Мо, N1 и Со настолько полное, что, как правило, переосаждение не требуется. Для получения правильных результатов необходим строгий контроль pH. Лучшие результаты получаются при pH [c.60]

    Hg (II), Mn (II), Pb, TI (III), U (VI), o (II), Mg. Мешают определению эквимолярные количества Bi, Се (III), r (III), Fe (III), La. Nd, Ni, Pd, Sn (II), Th (IV), V (IV), Y, Zn, Zr (IV), Ti (IV). Небольшие количества Fe (III), u (II), Bi, Ni, Pb, r (III) маски-5уют тиогликолевой кислотой [6961. Хлориды и нитраты не мешают, эольшие количества сульфатов, фосфатов, тартратов и цитратов значительно уменьшают поглощение. Сильно мешают фториды, нитрилотриуксусная кислота и комплексон III. [c.109]

    Определению А1 не мешают (при концентрации 25 мкг мл) Ыа, К, Ме, 2п, Сс1, N1, Аз (III), Со. Мешают, образуя окрашенные комплексы с ализарином 5 или изменяя интенсивность поглощения комплекса алюминия Не (И), Ре (III), Сг (III), 5Ь (III), В1, (VI), Мо (VI), V (V), Си (И), ВОзЗ-,Са, и, Зп (IV), Т1 (IV), РЬ, Мп(П), Р04= -, ЗЮз -. Зп (IV). Л (IV), РЬ и Мп (II) дают осадок или помутнение в конечном растворе В, РЬ и 31 мешают очень мало. Фосфаты уменьшают оптическую плотность растворов. Бериллий незначительно увеличивает окраску, 40 мкг бериллия эквивалентны 1 мкг алюминия 16561. Влияние железа безуспешно пытались устранять лимонной [1001, 12831, винной, щавелевой и фосфорной [1001] кислотами. Железо можно маскировать тиогликолевой кислотой [7541, цианидом, тиосульфатом [743]. 0,1—0,2 г твердого тиосульфата натрия устраняют влияние 5 мг РеаОд/л [c.131]

    Дозинель [6871 при определении алюминия в медных сплавах с эриохромцианином R для маскирования мешающих элементов вводит тиогликолевую кислоту. Не мешают до 10% Sn и РЬ, до 30% Мп, до 1% Р, Sb и As. Определение проводится при pH 5,1—5,2 при количествах меди больше 40 мг pH должен быть 4,0. В присутствии Ni и Fe вводят поправки (1% Ni и 1% Fe эквивалентны 0,005 и 0,008% алюминия соответственно). [c.215]

    По методике Банерджи к подготовленному для определения алюминия раствору (после операций отделения) добавляют I мл 1 о-ного раствора тиогликолевой кислоты. Спустя 5 мин. вводят I каплю 0,1%-ного раствора метакрезолпурпуро-вого и аммиак (I I) до исчезновения красной окраски. Объем раствора доводят до 25 мл, добавляют 15 мл составного алюминонового раствора и далее продолжают как описано выше (см. стр. 219). [c.220]

    Предприятие ФЕБ Лаборхемие Апольда (ГДР) выпускает тиогликолевую кислоту в виде 80 %-ного раствора в склянках коричневого стекла (25—250 г). Для фотометрического определения железа (III) в сплавах олова готовят раствор осторожно вливают 150 мл 80 %-ной гликолевой кислоты в 750 мл концентрированного аммиака и после охлаждения разбавляют водой до 1 л. [c.208]

    Описан [925] гравиметрический метод определения Sb(III), основанный на применении диэтилдитиофосфорной кислоты в качестве осадителя. Кроме диэтилдитиофосфорной кислоты из серусодержаш их.органических реагентов для гравиметрического определения Sb(III) предложены ф е н и л т и о-гидантоновая кислота [1275] и Р-а минонафта-лид тиогликолевой кислоты [901,902]. Вследствие малой растворимости образующихся осадков эти реагенты позволяют определять очень малые количества Sb (до 0,05 мг). Однако, многие элементы мешают. [c.31]

    Наряду с тем, что метод с применением меченого ЫЭМ дает хорошие результаты в анализе белков, он представляется многообещающим и в определении очень малых количеств несвязанных низкомолекулярных меркаптанов. В нейтральном или слегка кислом растворе с избытком МЭМ соответствующая реакция идет быстро. Так, например, в случае г-цистеина эта реакция является количественной и завершается в пределах 2 мин при pH раствора от 5,4 до 6,6 [25, 36]. Быстро образуются и аддукты тиогликолевой кислоты, меркаптоэтанола, а также 2-амино-4-меркаптомасляной кислоты [26]. В принципе, при анализе низкомолекулярных соединений не требуется количественного гидролиза аддуктов до 5-сук-цинильных производных, однако он может способствовать отделению аддуктов от избытка реагента хроматографическим методом. В результате реакции меркаптана с МЭМ образуется производное, характеризующееся центром (новым) асимметрии, и этот фактор следует принимать во внимание при выборе метода разделения. Скорости реакций зависят от pH раствора, и кроме того, в воде эти реакции идут быстрее, чем в этаноле [36]. Это позволяет предположить, что реакция образования аддукта является скорее ионной, а не свободнорадикальной. С ЫЭМ реагируют также сульфидные, сульфитные и тиосульфатные анионы [37]. [c.355]

    Тиогликолевая кислота реагирует с Ке(УП) в кислой среде (от pH Здо 4ЯН2804), предварительно восстанавливая его до низшей валентности с последующим образованием розового комплекса состава 1 2, пригодного для фотометрического определения рения [2]. Взаимодействие рения с тиогликолевой кислотой ускоряется добавлением 8пС12- Максимум светоноглощения лежит в области 320—350 нм, кажущийся и истинный молярные коэффициенты погашения равны 3600 и 2770 соответственно. Константа равновесия реакции (К =56-10 ) рассчитывалась по методу Комаря п Толмачева- Окраска развивается за 20—30 мин. и достигает максимальной величины при 10- и 40-кратном молярном избытке реагента и 8пС12 соответственно. Закон Бера выполняется в интервале концентраций 0,8—2,8 мкг Яе/мл. [c.109]

    В ряде работ по определению рения в производственных растворах для отделения рения от примесей последние осаждаются щелочью [752] или соосаждаются с гидроокисью железа [516]. Большие количества молибдена отделяют экстракцией хлороформом в виде 8-оксихинолината. Из щелочных растворов рений извлекают экстракцией ацетоном [327, 752]. В растворах, содержащих нитрат-ионы, например, в растворах, полученных при растворении молибденовых концентратов в HNO3, определение рения проводят сиектрофотометрическим методом с тиосалициловой или тиогликолевой кислотами [516]. [c.251]

    Линдгрен и Микава [5] нагревали эвгенол в течение 7 ч при 100° С с водным раствором тиогликолевой кислоты (около 50%) в присутствии небольших количеств 2 н. соляной кислоты. При этом они получили 40% 5-а-гваяцилпропил--у-тиогликолевой кислоты (II), но р-изомер не мог быть определен. Это показывает, что тиогликолевая кислота присоединяется по месту двойной связи через атом серы к -углеродному атому пропановой боковой цепи. [c.544]

    Тиогликолевую кислоту применяют для гравиметрического определения золота [1249], тионалид — для амперометрического [7851 определения и концентрирования [599] золота, а изооктил-тиогликолевую кислоту — для группового отделения золота методом хроматографии на бумаге [970]. [c.43]

    Тиогликолевая кислота образует с золотом в 2—10 N НС1 осадок желтоватого цвета, устойчивый в случае высушивания при 110—120° С и имеющий состав jHgOjSAu [1249], При определении 6—75,7 мг Аи ошибка 0,5%. Не мешают 4-кратные количества [c.113]

    Тиогликолевая кислота взаимодействует с ионами пятивалентного молибдена при pH 1—6 [66]. При этом появляется желтое устойчивое окрашивание, несколько менее интенсивное по сравнению с тем, которое появляется с раствором молибдата аммония одинаковой молярной концентрации. При определенных условиях (pH 2,5—6) тиогликолевая кислота образует окрашенное в желтый цвет соединение, в котором молибден находйтся в шестивалентном состоянии [66], несмотря на то, что реагент обладает ясно выраженными восстановительными свойствами. Тиогликолевая кислота, а также дитиогликолевая кислота не взаимодействуют с ионами трехвалентного молибдена при pH 1—4 с образованием соединений, окрашенных в желтый цвет [66]. [c.69]

    Анилиды тиокислот, тиосемикарбазоны и некоторые другие серусодержащие реагенты. Различные анилиды тиогликолевой кислоты КЫНСОСНгЗН [1426] и тиомолочной кислоты [1095], получаемые конденсацией соответственно тиогликолевой или тиомолочной кислоты с ароматическими аминами, образуют с молибдатом при определенных условиях окрашенные осадки [c.77]


Смотреть страницы где упоминается термин Тиогликолевая определение: [c.244]    [c.605]    [c.52]    [c.107]    [c.146]    [c.146]    [c.208]    [c.208]    [c.36]    [c.110]    [c.131]   
Методы органического анализа (1986) -- [ c.454 , c.456 , c.475 , c.486 ]




ПОИСК





Смотрите так же термины и статьи:

Тиогликолевая



© 2025 chem21.info Реклама на сайте