Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реагенты применение в хроматографическом

    Преимуществом метода является возможность его использования непрерывно в ходе хроматографического анализа. В дальнейшем при развитии этого направления особое внимание, но-видимому, будет обращено на использование новых селективных реакций для кислородсодержащих и других гетероатомных органических соединений, а также на разработку новых вариантов его применения (в частности, на использование летучих реагентов, применение в капиллярной хроматографии и т. п.). Дальнейшее развитие получит также метод селектив юго выделения компонентов. [c.85]


    Наряду с применением комплексообразующих реагентов при хроматографическом разделении смесей на катионитах, в котором образование несорбируемых комплексов понижает сорбируемость и при правильном выборе условий повышает степень хроматографического разделения, в последнее время все больше внимания уделяется разделению отрицательно заряженных комплексов на анионитах. Систематические исследования в этом направлении были выполнены Краусом с сотрудниками. Однако [c.185]

    ПРИМЕНЕНИЕ ЛЮМИНЕСЦЕНТНЫХ РЕАГЕНТОВ В ХРОМАТОГРАФИЧЕСКОМ АНАЛИЗЕ [c.148]

    Применение люминесцентных реагентов в хроматографическом анализе 149  [c.149]

    Таким образом, метод разделения смесей ионов на ионитах с применением комплексообразователей имеет очень широкие возможности. Следует только либо правильно выбрать соответствующий комплексообразователь для получения комплексов до хроматографирования и затем проводить хроматографическое разделение полученных комплексов, либо подобрать такой ионит, который обладал бы свойствами комплексообразователя и на нем проводить разделение смеси ионов. Успех разделения как в том, так и в другом случае зависит от правильного выбора ионита и реагента. [c.111]

    Адсорбционно-комплексообразовательное хроматографическое разделение осуществляется в результате фильтрования раствора разделяемых веществ через колонку. Эти особенности описываемого метода делают его весьма удобным, например, для очистки больших количеств солей от примесей посторонних металлов, находящихся в небольших концентрациях. В хроматографическую колонку по- -мещают сорбент, насыщенный комплексообразующим органическим реагентом. Наиболее эффективным является применение колонок из активного угля, содержащих хорошо адсорбирующийся на угле органический комплексообразующий реагент, например диметилглиоксим, а-нитро-зо-р-нафтол, ортооксихинолин и др. Уголь или другой сорбент (например, оксид алюминия) с поглощенным ком-плексообразователем называют модифицированным сорбентом, т. е. сорбентом с измененной природой и свойствами поверхности.  [c.217]

    Иногда процесс протекает только по равновесию (204), минуя стадии (201) — (203). Однако при постоянных значениях pH и концентрации H L, которые создаются в определенном участке хроматографической колонки при применении буферных растворов, степень поглощения ионов металла зависит от константы стойкости Kml комплексного соединения и константы кислотной диссоциации Кн L органического комплексообразующего реагента. Связь между этими величинами наиболее удобно выразить через концентрационную константу равновесия (202) Кр.  [c.243]


    Для изучения механизма реакций перспективно также их исследование в хроматографическом режиме, когда процесс осуществляется непосредственно в условиях разделения реагентов и продуктов реакции. Возможны также кинетические исследования, когда один из компонентов реакции применяется как стационарная фаза. Однако основное применение в химической кинетике газожидкостная хроматография находит как высокочувствительный и универсальный метод анализа сложных и многокомпонентных смесей. [c.308]

    Количественные разделения можно производить химическими или физическими методами (табл. 52). К числу химических методов относятся фракционное осаждение, соосаждение на коллекторах, применение органических реагентов-осадителей, электрохимическое разделение (электролиз на ртутном катоде и внутренний электролиз), хроматографическое разделение, например путем ионообменной хроматографии. К числу физических методов относятся экстракция при помощи органических растворителей, возгонка (сублимация), дистилляция (отгонка летучих компонентов). [c.278]

    Как указывалось в разд. 3.2, энантиомеры можно разделить в виде диастереомерных производных, получаемых по реакции с оптически активными реагентами. Поскольку диастереомеры обладают различными физическими и химическими свойствами, эти производные можно разделить обычными хроматографическими методами. Часто такие методы достаточно просты в применении, особенно в ГХ, где дериватизация необходима в любом случае. Однако недостатком этих методов являются определенные трудности в интерпретации результатов. [c.58]

    Применение метода внутреннего стандарта к биологическим образцам требует, однако, учета дополнительных факторов, связанных с особенностями АРП. В отличие от традиционного метода внутреннего стандарта (когда в хроматограф вводится непосредственно раствор со стандартом), при использовании АРП необходимо учитывать не только чувствительность хроматографического детектора к этиловому спирту и стандарту, но и тип анализируемого объекта — цельная кровь, плазма, сыворотка [46] (различие коэффициентов распределения, см. раздел 1.4). Если содержание стандарта поддерживать постоянным и строго воспроизводить условия подготовки пробы к анализу (количество добавляемых реагентов, температура и соотношение объемов фаз в сосуде для установления равновесия), то абсолютное значение концентрации стандарта может не [c.127]

    Люминесцентная хроматография представляет собой сочетание хроматографического и люминесцентного методов анализа, при этом на одной хроматограмме можно обнаружить ряд компонентов анализируемой смеси при применении одного универсального реагента. [c.153]

    Таким образом, введение большой пробы является простым способом уменьшения размывания заднего фронта, вызванного активными центрами, — эти центры нул но только спрятать . Для этого используют, например, прием долгого выстаивания, заключающийся в промывании хроматографической среды каким-либо высокополярным соединением (например, ледяной уксусной кислотой), которое настолько сильно адсорбируется на активных центрах, что они никогда не высвободятся. Более современный прием, который находит широкое применение в обработке твердых носителей для газо-жидкостной хроматографии, заключается в химической модификации активных центров (в приведенном ниже примере — ОН-групп) в результате реакции с некоторым реагентом. Например, обработка диметилдихлорсиланом приводит к замещению высокополярных гидроксильных групп, связанных с группой силилового эфира, и образованию неполярной поверхности метилсилана [c.545]

    Хроматографическое разделение проводят пропуская исследуемую нефтяную фракцию через колонку, заполненную адсорбентом. Адсорбированные продукты десорбируют при помощи жидкостей, обладающих большей поверхностной активностью, чем адсорбированное вещество. Из колонки сначала поступают парафиновые и нафтеновые УВ как наименее поверхностно-активные, затем ароматические УВ со все возрастающим количеством циклов в молекуле и, наконец, смолистые вещества. При этом последовательность применения промывных жидкостей и десорбирующих реагентов следующая деароматизированный бензин (фракция 60— 80 °С), бензол и спиртобензольная смесь. [c.92]

    Кинетический метод был также применен для идентификации пиков анализируемых соединений на основе точного измерения скоростей химических реакций диенов с хлормалеиновым ангидридом. На рис. 7 приведены кинетические данные для реакции изопрена и трансЛ, 3-пентадиена на колонке с хлормалеиновым ангидридом. Кинетические прямые построены на основании изучения реакций с чистыми известными соединениями. Экспериментальные точки соответствуют данным хроматографических опытов, полученным нри анализе неизвестной смеси. Таким образом, на основании хроматографического анализа при двух разных скоростях газа-носителя можно идентифицировать реагирующие соединения на основе скорости их реакции с нелетучим реагентом в реакторе-колонке. [c.36]


    Чистоту реагента проверяют хроматографически на бумаге, а концентрацию основного вашества устанавливают анализом на серу с применением нитхромазо 17 . [c.8]

    Представляют интерес следз ющие тома т. 6 (1955) — Применение хроматографического метода Цвета в химическом анализе т. 7 (1956) — Физико-химические методы анализа т. 8 (1958) — Спектрофотометрические и колориметрические методы анализа т. 9 (1958) — Применение радиоактивных изотопов в аналитической химии т. 10 (1960) — Анализ газов в металлах т. 11 (1960) — Органические реагенты в аналитической химии т. 12 (1960) — Методы определения примесей в чистых металлах т. 13 (1963) — Методы органического анализа т. 14 (1963) — ЭкстракциоЕшые методы в аналитической химии т. 15 (1965) — Методы концентрирования веществ в аналитической химии. [c.63]

    Литийалюминийтидрид в качестве реагента для хроматографического определения воды был предложен Березкиным и др. [82]. Это вещество было использовано, в частности, в работе [83] для определения влаги в пентан-гексановой фракции. Возможность применения гидридов лития, кальция и натрия исследовалась авторами работы [84]. [c.84]

    Известные разновидности хроматографии отличаются друг от друга тем, какие именно различия в свойствах веществ используются для их разделения с применением хроматографической техники. В первый период развития хроматографического метода использовались главным образом различия в способности к адсорбции. При этом применялись обычные адсорбенты, однако хроматографическая техника (первичное разделение на адсорбционной колонке, последующее промывание колонки, элюирование и т. п.) позволила М. С. Цвету, создателю хроматографического анализа, получить результаты, совершенно отличные от тех, какие получаются в статичесх их условиях. Использование различий в способности к ионному обмену, чаще всего в сочетании с различием в способности к образованию растворимых комплексных соединений с комплексообразующим агентом, находящимся в элюенте, привело к развитию широко применяемой ионообменной хроматографии. Различия в коэффициенте распределения вещества между двумя жидкостями явились основой для создания распределительной хроматографии. Различия в растворимости осадков,. образуемых разделяемыми веществами с реагентом-осадителем, содержащимся в колонке обычно в смеси с инертным носителем, используются в осадочной хроматографии. В этом последнем случае применение обычных химических реагентов в хроматографической колонке позволяет достичь качественного скачка в повышении эффективности разделения. [c.194]

    Суш ность адсорбционно-комилсксообразовательного хроматографического метода состоит в применении для разделения смеси веш еств колонн, содержащих комплексообразующее вещество и адсорбент, способный удерживать на своей поверхности комплексные соединения (в том числе соединеиия, обладающие значительной растворимостью), которые образуются ири взаимодействии разделяемых веществ с комплексообразующим агентом. Разделение катионов в таких колоннах определяется раз-личиел в способности металлов к комплексообразованию с данным агентом и в устойчивости образующихся в колоннах комплексных соединений. Применение носителя, способного адсорбировать эти соединения, расширяет возможности использования обычных химических реагентов для хроматографического разделения металлов, позволяя получать из легко доступных материалов сорбенты, отличающиеся высокой избирательностью действия и обеспечивающие в силу этого полноту разделения металлов, часто не достигаемую другими методами. [c.182]

    В последние годы ассортимент реагентов для ионного обмена—их называют теперь ионитами — значительно расширился. Некоторые из ионитов (сульфированные угли и соответствующие ионообменные смолы), называемые катионитами, обладают способностью обменивать содержащиеся в растворе катионы на ионы водорода. Другие (например, продукты конденсации фенилендиаминп с формальдегидом), называемые анионитами, обменивают различные анионы на ионы гидроксила. Последовательное применение ионитов этих двух видов позволяет достигать практически полной деминерализации воды без дистилляции (сами иониты легко регенерируются катиониты — промывгой раствором кислоты, аниониты — растворами щелочи или соды). Иониты применяются также в хроматографическом анализе для разделения близких между собой ионов. [c.373]

    Изложены общие теоретические основы аналитической химии и качес1 венный анализ. Рассмотрены гетерогенные (осадок — раствор), протолитические, окислительно-восстановительные равновесия, процессы комплексообразования, применение органических реагентов в аналитической химии, методы разделения и концентрирования, экстракция, некоторые хроматографические методы, качественный химический анализ катионов и анионов, использование физических и физико-химических методов в качественном анализе. Охарактеризованы методики аналитических реакций катионов и анионов, нх идентификация по ИК-спектрам поглощения. Приведены примеры и задачи. [c.2]

    Успешное применение сорбентов последнего типа для ВЭЖХ способствовало росту их производства самыми разными производителями. Каждая фирма производила такие сорбенты, как правило, на основе своего вида силикагеля и по своей технологии, которая обычно составляет ноу-хау производства. В результате большое количество сорбентов, называющихся химически совершенно одинаково (например, силикагель с привитым октадецилсиланом), имеют очень сильно различающиеся хроматографические характеристики. Это связано с тем, что силикагель может иметь поры шире или уже, разную поверхность, пористость, его поверхность до прививки может гидроксилироваться или нет, прививаться могут моно-, ди- или трихлорсиланы, условия прививки могут давать мономерный, полимерный или смешанный слой фазы, используются разные методы удаления остатков реагентов, может использоваться или не использоваться дополнительная дезактивация силанольных и других активных групп. [c.20]

    В простейшем варианте метода анализа аминогрупп с применением пипсилхлорида производное-носитель не добавляют, а с обработанной пробой количественно проводят ряд операций для удаления из нее избытка реагента [80]. Порцию анализируемого раствора, из которого удалена сульфокислота, подвергают хроматографическому разделению и измеряют радиоактивность каждого из разделенных производных. Для калибровки проводят аналогичный анализ известного количества соответствующего производного, приготовленного с применением того же количества радиореагента, что и в основном анализе. Содержание амина в анализируемой [c.308]

    Наряду с тем, что метод с применением меченого ЫЭМ дает хорошие результаты в анализе белков, он представляется многообещающим и в определении очень малых количеств несвязанных низкомолекулярных меркаптанов. В нейтральном или слегка кислом растворе с избытком МЭМ соответствующая реакция идет быстро. Так, например, в случае г-цистеина эта реакция является количественной и завершается в пределах 2 мин при pH раствора от 5,4 до 6,6 [25, 36]. Быстро образуются и аддукты тиогликолевой кислоты, меркаптоэтанола, а также 2-амино-4-меркаптомасляной кислоты [26]. В принципе, при анализе низкомолекулярных соединений не требуется количественного гидролиза аддуктов до 5-сук-цинильных производных, однако он может способствовать отделению аддуктов от избытка реагента хроматографическим методом. В результате реакции меркаптана с МЭМ образуется производное, характеризующееся центром (новым) асимметрии, и этот фактор следует принимать во внимание при выборе метода разделения. Скорости реакций зависят от pH раствора, и кроме того, в воде эти реакции идут быстрее, чем в этаноле [36]. Это позволяет предположить, что реакция образования аддукта является скорее ионной, а не свободнорадикальной. С ЫЭМ реагируют также сульфидные, сульфитные и тиосульфатные анионы [37]. [c.355]

    В соответствии с минимальными размерами диаметров промежуточных каналов Баррером [2] были введены три категории молекулярных сит. Однако следует отметить, что эта классификация не точна, так как сорбционная способность некоторых сит, имеющих каналы больших размеров, но вода из которых полностью удалена, может быть сходна с сорбционной способностью цеолитов, имеющих узкие каналы. При тщательном выборе катионных форм цеолита их можно эффективно использовать для широкого ряда хроматографических разделений. Область применения данного метода может быть значительно расширена путем использования его при различных температурах, так как две молекулы, сорбирующиеся с одинаковыми скоростями при одной температуре, могут иметь совершенно разные скорости сорбции при понижении температуры сорбции. Так как сорбционная емкость цеолитов обычно намного больше для полярных молекул, чем для неполярных, то разделить эти две группы соединений очень легко. Это различие в сорбции позволяет использовать цеолиты для осушки газов. Создание в последние годы молекулярных сит типа Linde (см. стр. 75) позволило проводить такие процессы в заводских масштабах. Более того, при использовании для осушки газов молекулярные сита имеют большие преимущества по сравнению с такими реагентами, как активированная окись алюминия и силикагель, в особенности там, где требуется эффективно [c.67]

    В последние годы все большее распространение получает хроматографическое разделение веществ по их молекулярному весу, причем первое место среди таких вариантов хроматографии принадлежит гель-фильтрации на сефадексах . Сефадекс представляет собой полусинтетический -сорбент полисахаридной природы, гранулы которого обладают порами определенного размера, так что диффузия внутрь этих гранул возможна только для молекул, величина которых не превышает величину пор. Поэтому сефадекс работает как своего рода молекулярное сито , задерживающее проникающие внутрь гранул низкомолекулярные вещества и не задерживающее полимеры. Гель-фильтрация незаменима для быстрого отделения полимера от низкомолекулярных примесей (неорганических солей, мономеров и т. д.). Ее применяют и для разделения полимеров, причем одновременно можно приблизительно оценить их молек лярный вес, так как существует набор сефадексов, различающихся величиной пор. Есть все основания полагать, что в химии полисахаридов этот перспективный метод будет находить все большее применение. Особенно интересным является использование сефадексов для разделения высоко- и низкомолекулярных осколков, образующихся при расщеплении биополимеров различными реагентами , и для выделения полисахаридов из различных природных источников Хроматография на модифицированных сефадексах, обладаюш.их ионообменными свойствами, например на диэтиламиноэтилсефадексе, также может служить эффективным приемом фракционирования полисахаридов . [c.487]

    Задача разделения решается разными путями 1) применением различных ионитов для сорбции определенных ионов 2) примене нием хроматографических методов при сорбции и элюированю для вытеснения менее прочно удерживаемых ионов 3) примене нием комплексообразующих реагентов для усиления различий прр сорбции и элюации отдельных ионов 4) применением различны) элюирующих реагентов для удаления отдельных ионов после коллективной сорбции. [c.116]

    Примером применения данного реагента, меченного изотопом является определение неомицинов А и В, а также неамина путем ацетилирования их первичных аминогрупп [99]. Для такого определения 10—20 мг пробы растворяют в 10 мл 0,01 н. водного раствора NaOH. К порции полученного раствора величиной 1 мл добавляют 0,1 мл 0,3 М водного раствора К2НРО4 и 0,1 мл (около 2 мэкв) уксусного-1- С ангидрида, имеющего удельную радиоактивность 50 мкКи/мл. Полученный раствор встряхивают в течение 30 мин, хотя на самом деле реакция завершается за гораздо меньшее время. Производные разделяют хроматографически на фильтровальной бумаге ватман № 40 в восходящем потоке растворителя, представляющего собой смесь 84 16 2 (по объему) / -бутанола, воды и пиперидина. Хроматографические пятна производных вырезают, помещают в закрытые камеры и в течение 2 ч нагревают при температуре 60 °С в присутствии 0,4 мл воды и 1,6 мл этанола. В полученный раствор добавляют раствор сцинтиллятора в смеси растворителей и измеряют радиоактивности растворов в камерах. По результатам этих измерений и по данным анализов стандартных проб анализируемых аминосоединений определяют содержание каждого из анализируемых соединений в пробе. [c.313]

    На основании вышеуказанного вполне очевидно, что выделение азотистых соединений различного химического типа из нефтей и нефтепродуктов с помощью хроматографических методов малоэффективно в связи с продолжительностью и низкой производительностью процесса, большим расходом реагентов. По-видимому, их применение наиболее целесообразно на стадиях очистки и тонкого разделения соответствующих концентратов, полученных нехроматографическими путями. В этом отношении заслуживают внимания методы, базирующиеся на кислотно-основном взаимодействии минеральных кислот с основаниями [19, 20] и на комплексо-образовании неосновных соединений азота с различными электроноакцепторами [17]. [c.118]

    ХРОМАТОГРАФИЧЕСКИЙ АНАЛИЗ [от греч. %ртца (хр<Ь[хатод) — окраска, цвет и ур фш — пшпу] — анализ сложных смесей, основанный на различной сорбции их комнонентов определенным сорбентом в динамических условиях. Используется с начала 20 в. (впервые применен при исследовании пигментов растений). Чаще всего заключается в пропускании анализируемой смеси через слой сорбента, помещенного в спец. колонку, и разделении ее (вследствие различной сорбируемости компонентов) по высоте колонки (длине слоя сорбента). О полноте разделения (обычно последовательным вымыванием компонентов из колонки чистым растворителем или специально подобранным реагентом) судят по выходным кривым качественный состав пробы устанавливают по положению пиков на выходных кривых, сравнивая их с пиками стандартных веществ количественное определение осуществляют по высоте пиков (h) или площади под ними (S) после получения соответствующих калибровочных графиков типа h = / С) или [c.696]

    Наряду с групповыми реагентами в ряде случаев целесообразно использовать специфические реагенты, взаимодействующие с одним-двумя компонентами. Например, для поглощения воды, мешающей хроматографическому анализу многих соединений, применяют такие реагенты, как ангидрон, хлористый кальций, пятиокись фосфора и др. (а также молекулярные сита). Так, нри анализе водных растворов углеводородов и З-бром-1,1,2,2-тетрафторпропана [66] перед хроматографической колонкой включали реактор (452 X 0,6 СЛ1) со смесью фосфорного ангидрида и огнеупорного кирпича (весовое отношение 9 1, фракция кирпича 60—80 меш). После поглощения воды хроматографическое разделение проводили на колонке (294 X 0,6 см), заполненной 20% силикона ДС-710 на огнеупорном кирпиче. Одна набивка реактора может быть использована для анализа 50 проб по 0,1 мл каждая. Метод применен для определения следов 3-бром- [c.83]


Смотреть страницы где упоминается термин Реагенты применение в хроматографическом: [c.235]    [c.56]    [c.208]    [c.164]    [c.313]    [c.424]    [c.71]    [c.71]    [c.424]    [c.186]    [c.362]   
Люминесцентный анализ неорганических веществ (1966) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте