Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растения, хлоропласты и фотосинтез

    Основным запасным полисахаридом в растениях является крахмал, образующийся в пластидах (хлоропластах или аминопластах) в виде крахмальных зерен диаметром от 1 до 100 мкм. Биосинтез крахмала проходит в две ступени сначала образуется амилоза, а затем на ее основе осуществляется синтез амилопектина. Крахмал на длительный период накапливается в семенах, где используется при их прорастании. Обычно же он концентрируется в листьях в период активного фотосинтеза, после которого ферментами переводится в удобную для транспортных целей сахарозу. [c.338]


    Известно, что в ходе фотосинтеза растения используют воду и СО, для произ..,)дства углеводов и выделения кислорода. Процесс осуществляется в фотосинтезирующих структурах — хлоропластах, которые в свою очередь состоят из более мелких субклеточных структур — ламелл, В ламеллах при поглощении двух квантов света молекулами хлорофилла протекает реакция расщепления воды и СОг  [c.342]

    Действие микроорганизмов достигает также гигантского размаха и в земной коре при процессах образования многих неорганических рудных месторождений. В хлоропластах зеленых растений при помощи квант света в результате фотосинтетического усвоения СОг образуются не только углеводы, но и белки и различные другие вещества. Правда, наиболее характерным продуктом фотосинтеза все же являются триозы или триозофосфаты, из которых потом образуются полисахариды, белки и жиры. Высшую фюрму фотосинтеза, имеющую наибольшее значение на земле, представляет процесс [c.341]

    Образование М. в растениях связано с ассимиляцией ими Oj и происходит в результате фотосинтеза. Молекула СО2 присоединяется к 1,5-дифосфату D-рибулозы в хлоропластах с участием фермента рибулозодифосфат-карбокси-лазы, а образующаяся в результате З-фосфо-О-глицериновая к-та (ф-ла VII) путем дальнейшего восстановления и конденсаций дает D-глюкозу (см. Глюконеогенез) или D-фруктозу при этом регенерируется молекула рибулозодифосфата (цикл Кальвина)  [c.139]

    Безусловно, наша попытка проникнуть в клетку при помощи электронного микроскопа не даст нам никаких знаний относительно процесса фотосинтеза, но, быть может, позволит нам кое-что узнать о тонкой структуре хлоропластов. Однако начнем мы со светового микроскопа. Ведь хлоропласты достаточно велики, и их очень удобно наблюдать в световой микроскоп. В клетках высших растений хлоропласты в общем однотипны по форме, напоминая диски или линзы диаметром чаще всего примерно 5 микрон. У некоторых видов мхов в клетках присутствует только по одному хлоропласту. Однако, как правило, в распоряжении ассимилирующей клетки их имеется 10—20, а иногда и больше. [c.244]

    Мембраны окружают не только сами клетки, но и внутриклеточные тельца — клеточные органеллы, например клеточное ядро, эндоплазматический ретикулум, митохондрии (небольшие структуры, ответственные за клеточное дыхание рис. 68 и 69), а в зеленых растениях — хлоропласты, состоящие из еще более мелких частиц — тилакоидов (рис. 70), в которых происходит фотосинтез. Именно в мембране проходят основные биологические процессы, включающие (рис. 71) как аккумуляцию солнечной энергии при фотосинтезе, когда из воды и углекислоты синтезируются сахара, так и использование сахаров в качестве горючего при клеточном дыхании.  [c.182]


    Энергия падающего света поглощается фотосинтезирующими пигментами в органеллах, называемых фоторецепторами (хлоропласты в высших растениях, пластиды в водорослях, хроматофоры в фотосинтезирующих бактериях). Преобладающим пигментом является хлорофилл любой организм, способный осуществлять фотосинтез, содержит по меньшей мере одну разновидность хлоро- [c.396]

    Фотосинтезирующие организмы. Самый примитивный тип фотосинтеза осуществляют солелюбивые галобактерии, живущие в средах с высоким (до 30 %) содержанием хлорида натрия. Простейшими организмами, способными осуществлять фотосинтез, являются также пурпурные и зеленые серобактерии, а также несерные пурпурные бактерии. Фотосинтетический аппарат у этих организмов устроен гораздо проще (состоит из одной фотосистемы), чем у растений кроме того, они не выделяют кислород, так как в качестве источника электронов используют соединения серы, а не воду. Фотосинтез такого типа получил название бактериального. Однако существуют цианобактерии (прокариоты, способные к фотоокислению воды и вьщелению кислорода), обладающие более сложной организацией фотосинтетического аппарата — двумя сопряженно работающими фотосистемами. У растений реакции фотосинтеза осуществляются в специализированных органеллах клетки — хлоропластах. У всех растений (от водорослей и мхов до современных голосеменных и покрытосеменных) прослеживается много общих черт в структурно-функциональной организации фотосинтетического аппарата. [c.418]

    Как правило, фотосинтез осуществляется в цитоплазматических органеллах растений — хлоропластах, число которых в клетке варьирует у различных видов фотосинтезирующих организмов от одного до нескольких тысяч (у сине-зеленых водорослей фотосинтез осуществляется в мембранной системе, не организованной в виде хлоро-пластов). Хлоропласты высших растений имеют форму эллипсоидов вращения с длинной осью 5—10 мкм. Они могут быть также сферическими, яйцевидными или дисковидными. Более полиморфны хлоропласты водорослей, представляющие собой иногда длинные перекрученные полосы или звездоподобные тельца. [c.46]

    Наблюдается разнообразие в способности клеточных мембран воспринимать воду и электролиты, а также свет. Установлено, что два основных процесса энергообеспечения живых систем— фотосинтез и дыхание — локализованы в мембранах внутриклеточных органелл растений хлоропластов и митохондрий. [c.66]

    Если хлоропласты мезофилла С4-растений отделить от растворимой фракции экстракта протопластов, то скорость зависимой от пирувата фиксации СОг заметно снизится. Считают, что остаточная активность связана с незначительной активностью ФЕП-карбоксилазы, остающейся в хлоропластах после дифференциального центрифугирования экстрактов протопластов (см. табл. 12.1). Как и следовало ожидать, у ячменя (Сз-растения) скорость фотосинтеза в хлоропластах (свободных от фракции цитозоля) и в экстрактах протопластов одинакова, так как карбоксилаза, участвующая в ВПФ-цикле, остается внутри хлоропластов (табл. 12.3). [c.364]

    Пластиды — это органеллы клеток растений, выполняющие различные функции. Наиболее важную роль играют хлоропласты, содержащие-хлорофилл структуры, в которых протекает фотосинтез. Как и в митохондриях, в хлоропластах имеется складчатая внутренняя мембрана и некоторое количество ДНК небольшого молекулярного веса. [c.34]

    Мембраны не являются пассивными полупроницаемыми оболочками, но принимают прямое и очень важное участие во всех функциях клетки. Мембраны обеспечивают активный транспорт вещества, идущий в направлении, противоположном градиенту химического или электрохимического потенциала. В мембранах локализованы основные биоэнергетические процессы — окислительное фосфорилирование и фотосинтез. АТФ синтезируется в мембранах митохондрий, в тилакоидных мембранах хлоропластов зеленых растений. Есть основания думать о связи между рибосомами, на которых синтезируется белок, и мембранной системой эндоплазматического ретикулума. Репликация ДНК и хромосом, по-видимому, происходит с участием мембран. [c.333]

    Биоэнергетические процессы, приводящие к синтезу АТФ, к зарядке биологических аккумуляторов , протекают в мембранах митохондрий. В них локализованы и пространственно организованы молекулярные системы, ответственные за энергетику живых организмов. Синтез АТФ в митохондриях сопряжен с электронным и ионным транспортом и с механохимическими явлениями. Функции митохондриальных мембран весьма сложны и многообразны. Другой тип биоэнергетических сопрягающих мембран — мембраны хлоропластов растений, ответственные за фотосинтез,— рассматривается в гл. 14. У бактерий сопряжение реализуется в плазматических мембранах. [c.423]

    Фотосинтез у растений осуществляется в хлоропластах, но у эукариот есть митохондрии, ночью они генерируют необходимую им АТФ, используя О2 для окисления углеводов, образующихся в хлоропластах днем. [c.191]

    Диффузия играет большую роль на многих стадиях процесса фотосинтети-ческого включения углерода СОг в углеводы. При этом углекислый газ диффундирует из атмосферы, достигая поверхности листа, а затем проходит через усть-ичные отверстия. Войдя в лист, СО2 диффундирует по межклеточным воздухоносным пространствам, а затем через клеточные оболочки и плазму клеток ме.зо-филла листа. Далее углекислый газ, по-виднмому, в форме НСОг диффундирует через цитоплазму и достигает хлоропластов. Затем СО2 оказывается в хлоропласте и попадает в зону действия ферментов, участвующих в образовании углеводов. Как видно, одну только эту сторону фотосинтеза можно расчленить на много стадий, в каждой из которых важную роль играет диффузия. Если бы с помощью ферментов фиксировался весь углекислый газ, находящийся в сфере их действия, и не происходила бы диффузия новых количеств углекислого газа из атмосферы, окружающей растение, процесс фотосинтеза прекратился бы. Диффузия важна также для многих других аспектов физиологии растений, особенно для проникновения веществ через мембраны. [c.17]


    МЕЗОФИЛЛ (СМ. ТАКЖЕ РИС. 7.3. И 7.4). Эта выполняющая ткань располагается между двумя слоями эпидермиса листа (рис. 6.1) и состоит из модифицированных паренхимных клеток, осуществляющих фотосинтез. Фотосинтетическую паренхиму иногда называют хлоренхимой. Цитоплазма клеток хлоренхимы содержит большое число хлоропластов, в которых и протекают реакции фотосинтеза. У двудольных растений мезофилл состоит из двух четко различающихся слоев верхний слой составляет палисадная паренхима, клетки которой имеют столбчатую форму, а нижний — губчатая паренхима с клетками неправильной формы, содержащими меньше хлоропластов. Фотосинтез вдет главным образом в палисадной паренхиме, а воздухоносные межклетники губчатой паренхимы обеспечивают интенсивный газообмен. [c.224]

    Следовательно, основным достоинством С4-фотосинтеза является повьппение эффективности фиксации диоксида углерода. Его можно рассматривать как дополнение, а не как альтернативу Сз-пути. Таким образом, С4-растения фотосинтетически более эффективны, поскольку скорость фиксации диоксида углерода обычно является лимитирующим фактором. Используя С4-путъ, С4-растения потребляют больше энергии, однако энергетический фактор обычно не является лимитирующим при фотосинтезе С4-растения растут в регионах с высокой интенсивностью света кроме того, у этих растений хлоропласты модифицированы так, чтобы максимально использовать доступную энергию (см. ниже). [c.277]

    Сильное ингибирующее действие замещенных мочевин на фотосинтез в неповрежденных зеленых растениях, отдельных частях зеленых растений, хлоропластах и в водорослях было обнаружено вскоре после открытия их гербицидных свойств. Так, Уэсселс и ван дер Веен наблюдали в 1956 г. [49], что листья или части растений, обработанных монуроном, теряют свою способность ассимилировать углекислый газ. Проводя исследования с другими родственными соединениями, эти авторы сумели показать, что замещенные мочевины ингибируют реакцию Хилла, т. е. реакцию выделения свободного кислорода в присутствии живого хлоропласта и подходящего акцептора водорода. Ингибирующее действие в отнощении реакции Хилла в дальнейшем подтвердилось в работах с различными мочевинами, препаратами хлоропластов и акцепторами водорода [50—54]. Кроме того, обнаружено ингибирующее действие мочевин на другие процессы, протекающие при фотосинтезе и связанные с превращениями энергии, например реэмиссию света и электронный парамагнитный резонанс [55, 56], но рассмотрение этих явлений выходит за пределы темы настоящей главы. [c.94]

    Таким образом, у растений с фотосинтезом по типу толстянковых много общего с Сд-путем фотосинтеза. Однако при САМ-метаболизме фиксация СО 2 с образованием малата (ночью) и декарбоксилирование малата с высвобождением СО 2 и пирувата (днем) разделены во времени. У С4-растений эти же реакции разграничены в пространстве первая протекает в хлоропластах мезофилла, вторая — в клетках обкладки. При достаточном количестве воды ряд растений с метаболизмом по типу толстянковых могут вести себя как Сз-растения. В свою очередь некоторые растения с Сз-путем фотосинтеза при недостатке воды проявляют черты САМ-ме-таболизма. [c.97]

    В ТОМ, ЧТО ЭТОТ процесс обеспечивает наш мир кислородом и энергией та часть ее, которая превышает расход энергии на фотолиз воды (то есть на выделение кислорода), аккумулируется в результате ряда реакций, начинающихся с восстановления СО2, в виде энергии связей С — Н, С — С, С —О и др. Таким аппаратом в растениях служит хлоропласт, построенный из квантосом — макромолекул, размером 100X200 А, молекулярная масса которых достигает почти 1 000 000 (рис. 46). Интересно, что квантосомы, извлеченные из хлоропласта, не полностью лишены фотохимической активности — они выделяют кислород из воды, но не производят фотосинтеза. [c.137]

    В клетках зеленых растений хлорофилл содержится в особых частицах — хлоропластах, которые и являются химическим заводом , осуществляющим фотосинтез. Кроме хлорофилла, в процессе фотосинтеза участвует целая система ферментов. Из углекислого газа в процессе фотосинтеза образуются триозы (глицериновый альдегид СН. ОН—СНОН—СНО, диоксиацетон НОСН2СОСН2ОН), которые далее превращаются в гексозу и затем в крахмал. Все эти превращения идут через стадию эфиров фосфорной кислоты. [c.304]

    В растениях хлорофилл связан с липопротеиновыми мембранами, находящимися в специальных органеллах клетки — хлоропластах. Типичная растительная клетка содержит от 50 до 200 хлоропластов. Каждый хлоропласт имеет длину около 1000 нм. Кроме двух наружных мембран хлороплаСты содержат систему внутренних мембран, образующих мно1 ослойные структуры, упакованные в пачки. Это так называемые граны. Внутренние мембраны ограничивают замкнутые объемы, отделенные от остальной части хлоропласта. Хлорофилл и другие пигменты находятся в ламеллах гран, ламеллах стромы, и именно в этих частях хлоропласта начинается процесс фотосинтеза. [c.162]

    Пигменты зеленых частей растений, содержащиеся в хлоропластах наряду с каротино-идами (в соотношении 3 1),-сине-зеленый хлорофилл а (XVI R = = Hj) и желто-зеленый хлорофилл 6 (XVI R = СНО), играющие важную роль в процессах фотосинтеза (см. Хлорофиллы). Кроме [c.491]

    Один из возможных способов увеличения фотосинтеза и, следовательно, продуктивности растений состоит в клонировании хлоро-пластных генов в клетках бактерий и их переносе в растения. Известно, что хлоропласты и прокариотические клетки сходны по ряду признаков. На основании этого возникла симбиотическая гипотеза происхождения хлоропластов, впервые выдвинутая А. С. Фамин-циньпл (1886). Согласно этой гипотезе, клетки прокариот и хлоропласты сходны. В них присутствуют кольцевые ДНК, 708-рибо-сомы синтез белков начинается с одной и той же аминокислоты — N-формилметионина, а синтез белка подавляется хлорамфенико-лом, а не циклогексимидом, как у эукариот. Позже было показано, что ДНК-зависимая РНК-полимераза Е. соН связывается с определенными участками ДНК хлоропластов шпината. [c.150]

    Сине-зеленые водоросли ( yanophyta или yanoba teria) представляют собой единственную большую группу прокариот, которые способны к фотосинтезу с выделением кислорода, сходному с фотосинтезом у высших растений. Однако тилакоидные мембраны у них находятся не в хлоропластах, а распределены по всей цитоплазме клетки, преимущественно на ее периферии. Фотосинтетические пигменты сине-зеленых водо- [c.353]

    Фотосинтез происходит в органоидах растительных клеток, именуемых хлоропластами. На рис. 14.11 приведена электронная микрофотография среза хлоропласта из листа кукурузы. Диаметр хлоропласта 3 — 10 мкм, толщина 1,5—3 мкм. Хлоропласт заполняет почти всю клетку зеленой водоросли. На рис. 14.11 видны примерно параллельные ламеллы, погруженные в более светлую строму. У высших растений ламеллы образуют стопки, называемые гранами. Ламеллы представляют собой сечения уплощенных замкнутых мешочков — тилакоидов имеющих диаметр около 500 нм. Их число в хлоропласте порядка 1000. Модель структуры хлоропласта показана на рис. 14.12. Процессы фотосинтеза локализованы в мембранах тилакоидов, в которых содержатся активные пигменты, прежде всего хлорофилл. Фрагменты тилакоидов реализуют реакции фотоиндуцированного транспорта электронов и сопряженное с ним фотофосфорилирование. В мембранах находятся светособирающие и электроннотранспортные комплексы, и АТФ-синтетазы хлоропластов. [c.458]

    Прохлорофиты привлекают к себе большое внимание в связи с проблемами эволюции фотосинтетического аппарата и возникновения фотосинтезирующих эукариот. Сравнение прохлорофит с цианобактериями и хлоропластами зеленых водорослей и высших растений обнаруживает черты сходства как с фотосинтетически-ми органеллами эукариот (организация тилакоидов, состав хлорофиллов), так и с цианобактериями (клеточное строение, состав каротиноидов, липидов, некоторые особенности метаболизма, последовательность оснований 165 рРНК). Для ответа на вопрос, в каком отношении прохлорофиты находятся с цианобактериями (развивались ли независимо и параллельно с цианобактериями, возникли ли из их предшественников, потерявших способность синтезировать фикобилипротеины, или, наоборот, цианобактерии возникли из прохлорофит), необходимо дальнейшее сравнительное изучение обеих групп эубактерий с фотосинтезом [c.323]

    Наряду с гемопротеидами широко распространены белки, содержащие железо в виде железосерных кластеров негемиповое железо). Эти белки играют важную роль в многочисленных процессах переноса э.т1ектронов — при фотосинтезе, окислительном фосфорилировании, для восстановления азота до аммиака азотфик-сирующими бактериями. Наиболее изучены железосерные белки из хлоропластов зеленых растений и бактериальные белки, известные под общим названием фер- [c.65]

    В зеленых растениях все световые стадии фотосинтеза и часть темновых стадий протекают в специальных органеллах — хлоропластах (рис. 102). Хлоропласты имеют близко примыкающие друг к другу внешнюю и внутреннюю мембраны, причем внутренняя мемб1)ана является гладкой, т.е. не содержит каких-либо впячиваний, аналогичных кристам митохондрий. Внутреннее содержимое хлоропласта состоит из строми, в которой происходят некоторые темновые стадии фотосинтеза, в том числе фиксация СО2, и специальных структур — тилако- [c.362]

    Важнейшую роль на всех уровнях организации клеточных форм жизни играют бензохиноны с изопреноидными боковыми цепями. Они служат незаменимыми деталями биохимических механизмов фотосинтеза и дыхания. У всех фотосинтезирующих организмов присутствуют пластохиноны 3,199, в основном, пластохинон-9 (л = 9), которые у растений локализованы в хлоропластах. Митохондрии же растений и нефотосинтезирующих клеток накапливают убихиноны или коэнзимы О 3,200. Способностью к биосинтезу последних наделены все формы жизни от бактерий до млекопитающих. Наш организм в нормальных условиях способен полностью обеспечить свои потребности в коэнзиме Q за счет собственного биосинтеза из поступающего с пищей тирозина через /i-гидроксибензойную кислоту. [c.333]

    Хлоропласты содержат хлорофилл и осуществляют процесс фотосинтеза у растений. Как и в митохондриях, в них содержится собственная ДНК. Аналогичные по функциям бактериальные структуры называют хроматофоры, а также тилакоиды и хлоросомы. В отличие от хлоропластов они не содержат ДНК и происходят из цитоплазматической мембраны. [c.43]

    В клетках водорослей, так же как и в других зеленых растениях, но в отличие от грибиых организмов, имеется хлоропласт-структура, обеспечивающая способность к фотосинтезу. [c.114]

    Можно представить модельную систему производства водорода, в которой фотосинтез остановлен на стадии разложения воды [528]. Водород при этом выводится из продукта растительного происхождения или водоросли до того, как он будет израсходован на восстановление диоксида углерода. Для такой модельной системы из клеток растений в чистом виде выделяются хлоропласты — оргапеллы, в которых протекает фотосинтез. Предполагается, что в таких модельных системах можно достигнуть КПД на уровне 10 %, пока же такая система может работать с КПД примерно 1 % Источником гидрогеназы являются, например, клетки сине-зеленых водорослей или ряда [c.344]


Библиография для Растения, хлоропласты и фотосинтез: [c.153]   
Смотреть страницы где упоминается термин Растения, хлоропласты и фотосинтез: [c.544]    [c.3]    [c.278]    [c.136]    [c.40]    [c.317]    [c.191]    [c.87]    [c.351]    [c.367]    [c.379]    [c.600]    [c.173]    [c.136]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.84 , c.85 , c.86 , c.87 , c.88 , c.89 , c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез

Хлоропласт

Хлоропласты фотосинтез



© 2025 chem21.info Реклама на сайте