Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крахмал биосинтез

    Основные научные работы — в области биохимии углеводов. При изучении метаболизма жиров впервые получил бесклеточный препарат, способный окислять жирные кислоты in vitro. Изучал механизм артериальной гипертонии почечного происхождения. Доказал существование гуморального фактора, повышающего кровяное давление. Открыл (1951) первый сахарный нуклеотид — уридинди-фосфатглюкозу. Изучил его функции в превращениях сахаров в биосинтезе углеводов. Доказал, что для превращения галактозы в глюкозу необходима предварительная чпи-меризация у четвертого углеродного атома выделил особый фермент, вызывающий это превращение. Открыл (1950-е — 1960-е) несколько десятков других нуклео-тиддифосфатсахаров (НДФ-саха-ров), относящихся к пуриновым и пиримидиновым производным. Нашел основной тип ферментативных реакций, ведущих к образованию НДФ-сахаров. Благодаря этим открытиям объяснил механизм биосинтеза многих углеводов, в частности гликогена (1959) и крахмала (1960). [c.292]


    Основным запасным полисахаридом в растениях является крахмал, образующийся в пластидах (хлоропластах или аминопластах) в виде крахмальных зерен диаметром от 1 до 100 мкм. Биосинтез крахмала проходит в две ступени сначала образуется амилоза, а затем на ее основе осуществляется синтез амилопектина. Крахмал на длительный период накапливается в семенах, где используется при их прорастании. Обычно же он концентрируется в листьях в период активного фотосинтеза, после которого ферментами переводится в удобную для транспортных целей сахарозу. [c.338]

    Биосинтез начинается с фотосинтеза [1]. Вся жизнь на Земле зависит от способности некоторых организмов (зеленых растений, водорослей и фотосинтезирующих бактерий), содержащих характерные фотосинтезирующие пигменты, использовать энергию солнечной радиации для синтеза органических молекул из неорганических веществ — диоксида углерода, азота и серы. Продукты фотосинтеза служат затем не только исходными веществами, но и источником химической энергии для всех последующих биосинтетических реакций. Обычно принято описывать фотосинтез только как процесс образования углеводов в некоторых случаях основными продуктами фотосинтеза, действительно, являются исключительно крахмал, целлюлоза и сахароза, однако в других организмах на синтез углеводов идет, быть может, всего лишь третья часть углерода, связываемого и восстанавливаемого в процессе фотосинтеза. При ближайшем рассмотрении оказывается, что нельзя провести четкую границу между образованием продуктов фотосинтеза и другими биосинтетическими реакциями в клетке, в которых могут участвовать промежуточные вещества фотосинтетического цикла восстановления углерода. [c.396]

    Оба полимера — крахмал и целлюлоза — образуются из о-глюкозы, переносчиками которой в зависимости от вида растений при синтезе целлюлозы являются АДФ, ГДФ или ЦДФ при синтезе крахмала переносчиком гликозильных остатков чаще всего является АДФ. В целлюлозе мономерные звенья соединены р(1 4)-гликозидными связями, а в главных цепях крахмала (амилоза) — а(1 4)-гликозидными связями. Акцепторами гликозильных остатков, переносимых нуклеозиддифосфатами, являются затравочные олигосахариды, состоящие из четырех и более мономерных единиц. Схематически процессы биосинтеза крахмала и целлюлозы из фосфорилированной глюкозы представлены ниже  [c.221]

    Биосинтез крахмала и гликогена хорошо изучен. В основном он заключается в следующем. [c.713]

    Биосинтез—единственный метод получения на основе растений и животных организмов ряда природных биологически активных веществ, содержащих радиоактивные соединения. Этим методом на основе растений легко могут быть получены углеводы глюкоза, фруктоза, крахмал, алкалоиды, глюкозиды и сложные эфирные масла, меченные [c.139]


    На этом основании авторы сделали вывод, что образование лигнина связано с биосинтезом шикимовой кислоты и ароматических аминокислот. Продолжая свое исследование, они наблюдали за процессом лигнификации путем количественного определения содержания ряда веществ (целлюлозы центозанов пектина крахмала шикимовой кислоты фенилаланина и тирозина) в молодых растениях зеленого гороха и красной сосны, выращивавшихся в водных культуральных растворах, содержавших различные предшественники лигнина (например, этанол, ацетат, пировиноградную, шикимовую, феруловую, фенилпиро-виноградную и и-оксифенилпировиноградную кислоты, фенилаланин, тирозин, кониферин и сирингин). [c.769]

    Г. обнаружены в вирусах и фагах, микроорганизмах, грибах, растениях, в клетках и тканях животных. Их главная ф-ция-участие в катаболизме сложных углеводов они играют также важную роль в их биосинтезе (напр., крахмала, углеводных цепей гликопротеинов). Липидозы и др. болезни накопления обусловлены наследств, недостатком определенных Г. [c.576]

    В природе органические полимеры получаются в результате биосинтеза под действием катализаторов - ферментов к таким полимерам, имеющим достаточно высокую молекулярную массу, относятся белки, нуклеиновые кислоты, целлюлоза, крахмал, лигнин, гемицеллюлозы и др. Природные полимеры выполняют различные функции в природе и технике. Одни из них, например белки и углеводы, выполняют функции пита- [c.18]

    Таким образом, растения при фотосинтезе запасают энергию и связывают углерод в виде D-фруктозо-б-фосфата, из которого затем синтезируют сахарозу и крахмал. Сахароза хорошо растворяется в воде и транспортируется в различные части растения, крахмал используется в качестве резервного полисахарида. Сахароза и крахмал легко гидролизуются, образующиеся при этом D-глюкоза и D-фруктоза служат исходньпки материалами для биосинтеза других моно-, олиго- и полисахаридов. D-Глюкоза и D-фруктоза подвергаются также расщеплению и окислению с выделением необходимой для жизнедеятельности растения энергии и образованием промежуточных соединений для последующего биосинтеза (ацетилкофермент А, D-эpитpoзo-4-фo фaт, фосфоенолпировиноградная кислота, рибозо-5-фосфат). На основе этих веществ растения синтезируют многочисленные представители различных классов соединений (лигнины, липиды, таннины, нуклеотиды, нуклеиновые кислоты, аминокислоты, терпены, пигменты, алкалоиды, фитогормоны и т.д.). Растительная биомасса является обширным возобновляемым сырьевым источником для производства различных органических материалов и соединений. [c.341]

    Актиномицеты могут усваивать сахара, органические кислоты, спирты, крахмал, декстрины, жиры, но интенсивное накопление антибиотиков у них наблюдается лишь на средах с определенными источниками углерода. Как видно из материалов, представленных в главе I, для биосинтеза полиеновых антибиотиков чаще всего используются глюкоза, крахмал, ре- [c.154]

    После 12 ч роста культура под микроскопом представляет собой отдельные илн соединенные в цепочки по 2—3 короткие палочки. Через 18 ч роста, когда а среде уже нет крахмала, начинают контролировать биосинтез а-амилазы. К 24 ч роста культура представляет собой отдельные палочки размером 4—5 мкм в длину н 1 мкм в ширину, активность а-амилазы в этот период должна составлять [c.75]

    Для приготовления питательных сред в микробиологической промышленности используют сырье минеральное, животного и растительного происхождения, а также синтезированное химическим путем. Эти веш,ества, входя в состав питательной среды, обеспечивают развитие культуры и биосинтез определенных продуктов. Они не должны содержать вредных примесей. При выборе сырья необходимо учитывать его влияние на себестоимость, так как в микробиологическом синтезе важное значение имеет стоимость исходных веществ и материалов. В качестве источников углерода чаще всего используют углеводы (глюкоза, сахароза, крахмал, лактоза) или богатые углеводами натуральные продукты (меласса, кукурузная мука, гидроль и др.), а также жиры и даже вещества, содержащие углеводороды (нефть, парафин, керосин, природный газ, метан и др.). Источником азота обычно бывают неорганические соли — сульфат аммония, двузамещенный фосфат аммония, аммиак, нитраты, а также мочевина или натуральные продукты — кукурузный экстракт, соевая мука, дрожжевой автолизат и т. д. [c.75]

    Для растений характерны способность к фотосинтезу, наличие целлюлозы, биосинтез крахмала [c.36]

    ЦЙНКОВЫЕ УДОБРЕНИЯ, один из ввдов микроудобрений, содержащий в качестве микроэлемента Zn. Последний -постоянный компонент растений (15-22 мг на 1 кг сухого в-ва), входит в состав ряда ферментов, участвующих в окислит.-восстановит. процессах в растит, организмах, способствует биосинтезу витаминов, ускоряет рост и развитие, повышает продуктивность с.-х. культур. При недостатке Zn в растениях нарушается обмен в-в, уменьшается содержание сахарозы и крахмала, развивается хлороз листьев (приобретают желтую окраску), что замедляет образование хлорофилла и снижает активность фотосинтеза. [c.382]

    Биосинтез с участием углерода-14 позволяет получать, помимо аминокислот, многие другие ценные продукты. Так, при поглощении С Юг листьями табака, фасоли или репы получается крахмал-С , гидролиз которого приводит к образованию меченой глюкозы. [c.57]

    Уменьшение содержания крахмала при выращивании картофеля в северных районах обусловлено рядом причин. Одна из них — короткий вегетационный период, вследствие чего ботва часто погибает от ранних заморозков, и в клубнях не успевают закончиться процессы накопления крахмала. Кроме того, важное значение имеет продолжительность дня в период клубнеобразования. Картофель относится к короткодневным растениям, и длинный день в период клубнеобразования может задерживать накопление крахмала. Низкие температуры з северных районах также могут замедлять процесс биосинтеза крахмала в клубнях. [c.426]


    На среде с повышенным содержанием соевой муки, глюкозы и крахмала биосинтез неомицина составляет до 8,8 мг/мл. Некоторые ростовые вещества способствуют увеличению выхода неомицина на 50%. К таким веществам относятся ауксины и а-наф-тилуксусная кислота, растворенные в смеси, состоящей из 90,5% этанола, 5% метанола и 4,5% воды. Наиболее эффективная доза ауксинов составляет семь частей на миллион, внесенная в среду перед стерилизацией. [c.252]

    Недостатком метода биосинтеза является образование в большинстве случаев равномерномеченых соединений, как это можно видеть на примере биосинтеза равномерномеченой -глюкозы 1,6—С . Систематическое изложение методов биосинтеза выходит за рамки настоящего сообщения. Поэтому ограничимся лишь указанием на то, что успешно разрешен биосинтез глюкозы 1,6— С с достаточно высоким радиохимическим выходом. Получены меченные углеродом препараты инулин (фруктоза на основе корней георгина) и крахмал. [c.139]

    Крахмал — один ии основных продуктов фотосинтеза. Пр( цесс биосинтеза крахмала зависит от многих факторов вида растения, условий выращивания, стадии зре-. гостм семян и др. Форма и размеры крахмальных зерен характерны для каждого вида растений. [c.233]

    Биосинтез полисахаридов матрицы еще менее изучен, чем биосинтез целлюлозы. Обнаруженные в растениях взаимопревращения НДФ-сахаров позволили предложить схему их возможной биосинтетической связи с полисахаридами (рис. 11.9). Согласно этой схеме, глюкоманнан так же, как и целлюлоза, образуется из гуанозиндифосфатпроизводных, а пектины и остальные гемицеллюлозы - из уридинднфосфатпроизводных. Следует отметить, что при биосинтезе крахмала - резервного полисахарида растений используется АДФ-О-глюкоза. Такое разъединение нуклеозидцифос-фатных производных моносахаридов в общих чертах согласуется с порядком формирования структурных полисахаридов. Пектиновые вещества образуют истинную срединную пластинку, на которую начинают откладываться целлюлозные микрофибриллы, создавая каркас слоев клеточной стенки. Этот каркас покрывается главными цепями макромолекул полиса- [c.337]

    Показано (Алеева, Папутская, 1968), что биосинтезу амфотерицина В способствует усиленная аэрация (табл. 49). При выращивании A L nodosus штамм 510 на средах № 6 и 7, включающих глюкозу и крахмал в качестве источников угле- [c.161]

    Субстратами брожения сахаролитических клостридиев служат такие моносахара, как глюкоза, фруктоза, лактоза, ксилоза и др. Некоторые виды могут использовать крахмал, целлюлозу, пектин, хитин, предварительно гидролизуемые соответствующими экзоферментами. Типичными представителями сахаролитических клостридиев, осуществляющих разобранное в предыдущем разделе классическое маслянокислое брожение, являются С. butyri um и С. pasteurianum. Известны среди клостридиев виды, сбраживающие сахара по гликолитическому пути, но без образования масляной кислоты (табл. 17). Пути, ведущие к биосинтезу большинства перечисленных в таблице продуктов брожений, осуществляемых клостридиями, уже обсуждались нами при разборе маслянокислого и других видов брожений. [c.242]

    УДФ-глюкоза служит донором гликозильных остатков и при синтезе полисахарида гликогена, катализируемом гликогепсиптазой. Аналогично протекает и синтез крахмала, однако мономером в этом случае может служить АДФ-глюкоза, а фермент, катализирующий это превращение, называют крахмалсиитазой. Общее уравнение биосинтеза линейной цепи этих двух полисахаридов записывается в виде [c.375]

    Фосфат глюкозы, или 1-глюкозофосфат (1-глюкозофосфорная кислота), иногда называемый эфиром Кори , образуется из полисахаридов — крахмала и гликогена — при их расщеплении ферментом фосфорилазой в присутствии неорганических фосфатов. Разрыв гликозидной связи при расщеплении полисахарида сопровождается присоединением к отщепляющемуся остатку глюкозы фосфорной кислоты (такой процесс называется фосфороли-зом). 1-Глюкозофосфат, в свою очередь, является исходным веществом при биосинтезе крахмала и гликогена (см. стр. 713 сл.) так как в 1-фосфате глюкозы этерифицирован полуацетальный гидроксил, этот эфир не обладает восстанавливающими свойствами. Характерна стойкость его к щелочному гидролизу и легкость гидролиза разбавленными минеральными кислотами. Удельное вращение 1-глюкозофосфорной кислоты [а] =-И20.  [c.661]

    Из-за жестких клеточных стенок растения не могут питаться таким же способом, как животные. Поэтому растениям приходится использовать органические вещества, вырабатываемые их собственными фотосинтезирующими тканями. У зеленых растений фотосинтез происходит в хлоропластах, которые, таким образом, служат постоянным внутреш1им источником питательных веществ (разд 9.3). Органические продукты фотосинтеза могут непосредственно использоваться клетками для различных процессов биосинтеза, могут запасаться в виде осмотически инертных полисахаридов (обычно крахмала) или превращаться в сравнительно низкомолекулярные сахара (как правило, сахарозу), которые транспортируются в другие ткаии растения, например корни, в соответствии с метаболическими нуждами этих тканей. [c.182]

    Первоначальные гипотезы о биосинтезе фенольных соединений в растительных организмах долгое время оставались бе экспериментальной проверки. Они основывались главным образом либо на данных гистологии и гистохимии, либо на аналогиях с известными химическими реакциями. Хотя эти гипотезы представляют скорее исторический интерес, все же в них и до сих пор можно найти немало интересного и ценного. Первая из таких гипотез, насчитывавшая наибольшее число сторонников, связывала происхождение фенольных соединений с углеводами. Так, Виганд (Wigand, 1862) считал, что фенольные соединения (дубильные вещества) образуются из крахмала и служат родоначальниками красящих веществ растений — антоцианов. Такого же мнения придерживался и Шелль (1874). Обстоятельные исследования но образованию фенольных соединений были проведены Краусом (Kraus, 1889) в Халле. На основании многолетних [c.142]

    Познакомимся теперь с тем, каким образом фотосинтезирующие организмы образуют глюкозу и прочие углеводы из СО2 и HjO, используя для этой цели энергию АТР и NADPH, образующихся в результате фотосинтетического переноса электронов. Здесь мы сталкиваемся с существенным различием между фотосинтезирующими организмами и гетеротрофами. Зеленым растениям и фотосинтезирующим бактериям двуокись углерода может служить единственным источником всех углеродных атомов, какие требуются им не только для биосинтеза целлюлозы или крахмала, но и для образования липидов, белков и многих других органических компонентов клетки. В отличие от них животные и вообще все гетеротрофные организмы не способны осуществлять реальное восстановление СО2 и образовывать таким образом новую глюкозу в сколько-нибудь заметных количествах. Мы, правда, видели, что СО2 может поглощаться животными тканями, например в ацетил-СоА-карбоксилаз-ной реакции во время синтеза жирных кислот [c.701]

    Наряду с накоплением крахмала в течение периода клуб-необразования происходит и биосинтез белков в клубнях. Молодые клубни содержат меньше белков, чем зрелые. По дан- [c.423]

    Важной группой фосфорных соединений, постоянно присутствующих во всех тканях растений, являются фосфорные эфиры сахаров, или сахарофосфаты. Эти соединения играют особенно существенную роль в процессе фотосинтеза, при дыхании, биосинтезе сложных углеводов (сахарозы, крахмала и др.) из более простых, при взаимных превращениях углеводов и т. д. В настоящее время известно свыше десяти соединений этого типа, которые принимают участие в обмене веществ. Строение некоторых из них следующее  [c.232]


Смотреть страницы где упоминается термин Крахмал биосинтез: [c.173]    [c.321]    [c.84]    [c.311]    [c.46]    [c.50]    [c.137]    [c.235]    [c.48]    [c.155]    [c.609]    [c.610]    [c.613]    [c.71]    [c.187]    [c.144]    [c.233]   
Биохимия Том 3 (1980) -- [ c.0 ]

Химия углеводов (1967) -- [ c.609 , c.613 ]

Биохимия (2004) -- [ c.221 ]

Основные начала органической химии том 1 (1963) -- [ c.713 , c.714 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.614 , c.705 , c.706 ]

Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.619 ]

Биохимия растений (1968) -- [ c.147 , c.154 ]

Углеводы успехи в изучении строения и метаболизма (1968) -- [ c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Крахмал



© 2024 chem21.info Реклама на сайте