Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлоропласты фотосинтез

    Основным запасным полисахаридом в растениях является крахмал, образующийся в пластидах (хлоропластах или аминопластах) в виде крахмальных зерен диаметром от 1 до 100 мкм. Биосинтез крахмала проходит в две ступени сначала образуется амилоза, а затем на ее основе осуществляется синтез амилопектина. Крахмал на длительный период накапливается в семенах, где используется при их прорастании. Обычно же он концентрируется в листьях в период активного фотосинтеза, после которого ферментами переводится в удобную для транспортных целей сахарозу. [c.338]


    Вспомним теперь материал гл. 11, где говорилось, что в цикле Кальвина для превращения СОг в сахар необходимы как NADPH, так и АТР. Насколько нам известно, стехиометрия реакции определяется урав-лением (11-16). Помимо двух молекул NADPH, требуемых для восстановления одной молекулы СОг, нужны еще три молекулы АТР. Уместно спросить, откуда же они берутся. Z-схема дает на это простой ответ. Падение потенциала в цепи переноса электронов, соединяющей верхний конец фотосистемы II с нижним концом фотосистемы I, вполне достаточно для синтеза АТР в результате переноса электронов. По всей вероятности, на каждую пару электронов, проходящих по этой цепи переносчиков, синтезируется только одна молекула АТР. Поскольку, согласно стехиометрии уравнения (11-16), на каждую молекулу NADPH приходится Р/г молекулы АТР, должен существовать еще ка-кой-то механизм синтеза АТР. Кроме того, в хлоропластах, несомненно, протекает и множество других АТР-зависимых процессов, так что реальные потребности в АТР, генерируемом в ходе фотосинтеза, могут быть значительно выше. [c.39]

    Действие микроорганизмов достигает также гигантского размаха и в земной коре при процессах образования многих неорганических рудных месторождений. В хлоропластах зеленых растений при помощи квант света в результате фотосинтетического усвоения СОг образуются не только углеводы, но и белки и различные другие вещества. Правда, наиболее характерным продуктом фотосинтеза все же являются триозы или триозофосфаты, из которых потом образуются полисахариды, белки и жиры. Высшую фюрму фотосинтеза, имеющую наибольшее значение на земле, представляет процесс [c.341]

    Образование М. в растениях связано с ассимиляцией ими Oj и происходит в результате фотосинтеза. Молекула СО2 присоединяется к 1,5-дифосфату D-рибулозы в хлоропластах с участием фермента рибулозодифосфат-карбокси-лазы, а образующаяся в результате З-фосфо-О-глицериновая к-та (ф-ла VII) путем дальнейшего восстановления и конденсаций дает D-глюкозу (см. Глюконеогенез) или D-фруктозу при этом регенерируется молекула рибулозодифосфата (цикл Кальвина)  [c.139]

    Однако в тех же самых клетках, в которых идет фотосинтез, проходят и другие процессы обмена, например синтез белков и жиров, а также различные процессы диссимиляции. Все эти процессы, прямо или косвенно, влияют на работу фотосинтетического механизма. Даже внутри хлоропластов фотосинтез является только одной из нескольких одновременно идущих реакций, как, например, полимеризация и деполимеризация сахаров, а также реакции дыхания последний процесс идет с различной интенсивностью во всех клетках, тканях и органах живого организма. [c.570]


    Энергия падающего света поглощается фотосинтезирующими пигментами в органеллах, называемых фоторецепторами (хлоропласты в высших растениях, пластиды в водорослях, хроматофоры в фотосинтезирующих бактериях). Преобладающим пигментом является хлорофилл любой организм, способный осуществлять фотосинтез, содержит по меньшей мере одну разновидность хлоро- [c.396]

    Примером наиболее сложного и тонкого механизма фотосенсибилизации является фотосинтез, в результате которого из простых молекул СОг и НгО получаются сложные органические соединения. Роль сенсибилизатора в этих процессах играет хлорофил, но не в простом молекулярном виде, а в виде сложных надмолекулярных, биологических структур — хлоропластов. [c.304]

    Нередко электронное возбуждение одного хромофора вызывает флуоресценцию другого хромофора, расположенного поблизости. Так, например, возбуждение молекул красителя, образующих монослой, приводит к флуоресценции слоя другого красителя, находящегося от первого на расстоянии 5 нм. Возбуждение остатков тирозина в белках может вызвать флуоресценцию триптофана, а возбуждение триптофана— флуоресценцию красителя, связанного с поверхностью молекулы белка, или флуоресценцию связанного кофермента [57]. Такого рода резонансный перенос энергии характерен для тех случаев, когда спектр флуоресценции одной молекулы перекрывается со спектром поглощения другой. При этом реального испускания и поглощения света не происходит, а имеет место безызлучательный перенос энергии. Резонансный перенос энергии имеет большое биологическое значение для фотосинтеза. Поскольку молекула с е = 3-10 при воздействии прямого солнечного света поглощает около 12 квантов света в секунду, моно-молекулярный слой хлорофилла будет поглощать всего 1 % общего числа квантов, падающих на поверхность листа [63]. По этой причине молекулы хлорофилла располагаются в виде многочисленных тонких слоев внутри хлоропластов. Однако непосредственно в реакционных центрах, где идут фотохимические процессы, находится лишь небольшое число специализированных молекул хлорофилла. Остальные молекулы поглощают свет и передают энергию в реакционный центр небольшими порциями. [c.31]

    Пластиды — это органеллы клеток растений, выполняющие различные функции. Наиболее важную роль играют хлоропласты, содержащие-хлорофилл структуры, в которых протекает фотосинтез. Как и в митохондриях, в хлоропластах имеется складчатая внутренняя мембрана и некоторое количество ДНК небольшого молекулярного веса. [c.34]

    Белки связаны с липидами и с большинством пигментов. Их поверхность нередко образована гидрофильными и гидрофобными участками [10]. Благодаря амфифильному характеру они образуют в водных средах очень прочные соединения (агрегаты) между собой или с другими гидрофобными либо амфифильными молекулами. Главные белки ламелл хлоропластов представляют собой белково-хлорофильные комплексы, обеспечивающие захват и передачу фотонов, фотохимические центры, где происходят первичные реакции фотосинтеза, звенья цепей передачи электрона, которые создают градиент pH между двумя сторонами ламелл, и, [c.239]

    Мембраны хлоропластов 0,6 Фотосинтез [c.106]

    Как видно из этих реакций, фотосинтез происходит при участии клеточных органоидов — хлоропластов, где находится хлорофилл, и митохондрий. [c.8]

    Сложные процессы метаболизма, запасания и расходования энергии пространственно локализованы в клетках. Дыхание реализуется в мембранах митохондрий, фотосинтез — в мембранах хлоропластов. Биохимические процессы эволюционно адаптированы. Так, у животных пустынь и у птиц главным источником метаболической энергии является жир, а не гликоген. В пустыне надо обеспечивать не только максимальный выход энергии, но и максимум образования воды — при окислении жира производится вдвое больше воды, чем при окислении гликогена. Для птиц существенна меньшая масса жира. Масса гликогена и связанной с ним воды в 8 раз больше, чем масса жира, дающая при окислении то же количество энергии. [c.54]

    Мембраны не являются пассивными полупроницаемыми оболочками, но принимают прямое и очень важное участие во всех функциях клетки. Мембраны обеспечивают активный транспорт вещества, идущий в направлении, противоположном градиенту химического или электрохимического потенциала. В мембранах локализованы основные биоэнергетические процессы — окислительное фосфорилирование и фотосинтез. АТФ синтезируется в мембранах митохондрий, в тилакоидных мембранах хлоропластов зеленых растений. Есть основания думать о связи между рибосомами, на которых синтезируется белок, и мембранной системой эндоплазматического ретикулума. Репликация ДНК и хромосом, по-видимому, происходит с участием мембран. [c.333]

    Биоэнергетические процессы, приводящие к синтезу АТФ, к зарядке биологических аккумуляторов , протекают в мембранах митохондрий. В них локализованы и пространственно организованы молекулярные системы, ответственные за энергетику живых организмов. Синтез АТФ в митохондриях сопряжен с электронным и ионным транспортом и с механохимическими явлениями. Функции митохондриальных мембран весьма сложны и многообразны. Другой тип биоэнергетических сопрягающих мембран — мембраны хлоропластов растений, ответственные за фотосинтез,— рассматривается в гл. 14. У бактерий сопряжение реализуется в плазматических мембранах. [c.423]


    МЕЗОФИЛЛ (СМ. ТАКЖЕ РИС. 7.3. И 7.4). Эта выполняющая ткань располагается между двумя слоями эпидермиса листа (рис. 6.1) и состоит из модифицированных паренхимных клеток, осуществляющих фотосинтез. Фотосинтетическую паренхиму иногда называют хлоренхимой. Цитоплазма клеток хлоренхимы содержит большое число хлоропластов, в которых и протекают реакции фотосинтеза. У двудольных растений мезофилл состоит из двух четко различающихся слоев верхний слой составляет палисадная паренхима, клетки которой имеют столбчатую форму, а нижний — губчатая паренхима с клетками неправильной формы, содержащими меньше хлоропластов. Фотосинтез вдет главным образом в палисадной паренхиме, а воздухоносные межклетники губчатой паренхимы обеспечивают интенсивный газообмен. [c.224]

    Большая автономия свойственна хлоропластам, однако и здесь основной процесс, осуществляемый хлоропластом, — фотосинтез, также контролируют гены самого хлоропласта и гены ядра. Правда, генетика хлоропласта разработана хуже, чем генетика митохондрий. Возможно, поэтому гипотеза симбиогенетического происхождения хлоропластов представляется более вероятной, чем аналогичная гипотеза в отношении митохондрий. [c.250]

    В ТОМ, ЧТО ЭТОТ процесс обеспечивает наш мир кислородом и энергией та часть ее, которая превышает расход энергии на фотолиз воды (то есть на выделение кислорода), аккумулируется в результате ряда реакций, начинающихся с восстановления СО2, в виде энергии связей С — Н, С — С, С —О и др. Таким аппаратом в растениях служит хлоропласт, построенный из квантосом — макромолекул, размером 100X200 А, молекулярная масса которых достигает почти 1 000 000 (рис. 46). Интересно, что квантосомы, извлеченные из хлоропласта, не полностью лишены фотохимической активности — они выделяют кислород из воды, но не производят фотосинтеза. [c.137]

    Помимо хлорофилла, который является основным видом фотосинтетических пигментов, в зелепо.м листе (в так называемых хлорипластах, представляющих собой сложные специализированные биологические структуры) содержатся и другие пигменты — каротинонды и фикобелины, которые обычно называют вспомогательными, Эти пигменты, по современным представлениям, принимают известное участие в фотосинтезе, а также защищают хлорофилл от фотоокисления. Помимо пигментов, основными компонентами хлоропластов, в которых, собственно, и осуществляется весь процесс фотосинтеза, являются липоидные вещества и белки, которые содержат большое число ферментов, необходимых для осуществления последующих стадий фотосинтеза, не связанных с воздействием солнечной радиации. [c.177]

    В клетках зеленых растений хлорофилл содержится в особых частицах — хлоропластах, которые и являются химическим заводом , осуществляющим фотосинтез. Кроме хлорофилла, в процессе фотосинтеза участвует целая система ферментов. Из углекислого газа в процессе фотосинтеза образуются триозы (глицериновый альдегид СН. ОН—СНОН—СНО, диоксиацетон НОСН2СОСН2ОН), которые далее превращаются в гексозу и затем в крахмал. Все эти превращения идут через стадию эфиров фосфорной кислоты. [c.304]

    Диффузия играет большую роль на многих стадиях процесса фотосинтети-ческого включения углерода СОг в углеводы. При этом углекислый газ диффундирует из атмосферы, достигая поверхности листа, а затем проходит через усть-ичные отверстия. Войдя в лист, СО2 диффундирует по межклеточным воздухоносным пространствам, а затем через клеточные оболочки и плазму клеток ме.зо-филла листа. Далее углекислый газ, по-виднмому, в форме НСОг диффундирует через цитоплазму и достигает хлоропластов. Затем СО2 оказывается в хлоропласте и попадает в зону действия ферментов, участвующих в образовании углеводов. Как видно, одну только эту сторону фотосинтеза можно расчленить на много стадий, в каждой из которых важную роль играет диффузия. Если бы с помощью ферментов фиксировался весь углекислый газ, находящийся в сфере их действия, и не происходила бы диффузия новых количеств углекислого газа из атмосферы, окружающей растение, процесс фотосинтеза прекратился бы. Диффузия важна также для многих других аспектов физиологии растений, особенно для проникновения веществ через мембраны. [c.17]

    Система тилакоидных мембран хлоропласта превраш,а-ет энергию света в форму, которая может быть использована для осушествления химических реакций. Целиком процесс фотосинтеза был схематически представлен на рис. 10.1. В приводимом ниже обсуждении фотосинтеза рассматриваются три стадии. Первая стадия представляет собой световую реакцию — первичный процесс, с помош,ью которого энергия света поглощается светособирающими пигментами и переносится на фотохимические реакционные центры. На второй стадии поглощенная энергия света используется для осуществления транспорта электронов от воды до NADP+. В ходе электронного транспорта устанавливается градиент заряда, или концентрации протонов, через функциональные везикулы мембраны. Третья стадия представляет собой путь, по которому NADPH, образованный электронтранспортной системой, и АТР, генерируемый за счет различий электрохимического потенциала протонного градиента, используются для фиксации СО2 и синтеза углеводов. Хотя в целях упрощения процесс фотосинтеза разбит на три стадии, необходимо помнить, что поглощение света, транспорт электронов и генерация электрохимического градиента в действительности очень тесно сопряжены. [c.333]

    В растениях хлорофилл связан с липопротеиновыми мембранами, находящимися в специальных органеллах клетки — хлоропластах. Типичная растительная клетка содержит от 50 до 200 хлоропластов. Каждый хлоропласт имеет длину около 1000 нм. Кроме двух наружных мембран хлороплаСты содержат систему внутренних мембран, образующих мно1 ослойные структуры, упакованные в пачки. Это так называемые граны. Внутренние мембраны ограничивают замкнутые объемы, отделенные от остальной части хлоропласта. Хлорофилл и другие пигменты находятся в ламеллах гран, ламеллах стромы, и именно в этих частях хлоропласта начинается процесс фотосинтеза. [c.162]

    Жидкий объем любого масштаба может подвергаться воздействиям гидростатической подъемной силы, возникающим однократно или многократно от многих и разнообразных видов и сочетаний физических процессов. Подъемная сила может возникнуть из-за разности плотностей в поле объемной силы, а разность плотностей образуется вследствие тепло- и массопереноса. В свою очередь тепло- и массоперенос, вызывающий появление подъемной силы, может быть обусловлен действием многих и разных механизмов. Например, даже кажущийся простым эффект возникновения подъемной силы, действующей на лист кукурузы, освещенный солнцем, оказывается достаточно сложным. Солнце нагревает лист, который для поддержания теплового равновесия (терморегулирования) может испарять водяной пар. В процессе фотосинтеза хлоропласт листа поглощает СОа из воздуха и выделяет Ог. Таким образом, в образовании результирующей подъемной силы одновременно участвуют перенос тепла и три процесса массопереноса. Эти процессы объединяются с переносом тепла излучением. Другой пример — потеря метаболической теплотымлекопитающими с поверхности их тел. Теплота тела порождает теплоперенос вблизи его поверхности. Но часто такое же по порядку величины воздействие оказывает потение. Испарения с поверхности тела увлажняют прилегающий слой воздуха. Таким образом, возникают две составляющие аэростатической силы, направленной вверх. [c.9]

    Пигменты зеленых частей растений, содержащиеся в хлоропластах наряду с каротино-идами (в соотношении 3 1),-сине-зеленый хлорофилл а (XVI R = = Hj) и желто-зеленый хлорофилл 6 (XVI R = СНО), играющие важную роль в процессах фотосинтеза (см. Хлорофиллы). Кроме [c.491]

    В 40-50-х гг. М. Калвин, используя изотоп С, выявил механизм фиксации СО2. Д. Арнон (1954) открыл фотофос-ф( илирование (инициируемый светом синтез АТФ из АДФ и Н3РО4) и сформулировал концепцию электронного транспорта в мембранах хлоропластов. Р. Эмерсон и Ч.М. Льюис (1942-43) обнаружили резкое снижение эффективности фотосинтеза при Х>700 нм (красное падение, или первый эффект Эмерсона), а в 1957 Эмерсон наблюдал неадцитивное [c.179]

    Один из возможных способов увеличения фотосинтеза и, следовательно, продуктивности растений состоит в клонировании хлоро-пластных генов в клетках бактерий и их переносе в растения. Известно, что хлоропласты и прокариотические клетки сходны по ряду признаков. На основании этого возникла симбиотическая гипотеза происхождения хлоропластов, впервые выдвинутая А. С. Фамин-циньпл (1886). Согласно этой гипотезе, клетки прокариот и хлоропласты сходны. В них присутствуют кольцевые ДНК, 708-рибо-сомы синтез белков начинается с одной и той же аминокислоты — N-формилметионина, а синтез белка подавляется хлорамфенико-лом, а не циклогексимидом, как у эукариот. Позже было показано, что ДНК-зависимая РНК-полимераза Е. соН связывается с определенными участками ДНК хлоропластов шпината. [c.150]

    Темновая стадия фотосинтеза. Внутри хлоропластов протекают многие ферментативные реакции, использующие энергию АТФ и НАДФН, в результате которых синтезируются углеводы, аминокислоты, белки, жирные кислоты, липиды, азотистые основания пуриновых и пиримидиновых нуклеотидов и тетрапиррольная группировка самого хлорофилла. Поглощаемый на этой стадии СО2 включается в самые различные реакции организма. Схема темновой стадии приведена на рис. 40. [c.94]

    Пластохиноны содержатся в хлоропластах листа и связаны с процессами фотосинтеза. 2,3-Диметил-б-тетрапренил-1,4-бензохинон, пластохинон-4 (л =4), имеет такую же боковую цепь, что и менахинон-4 (витамин К2(20))- Доказано строение и осуществлен синтез натурального 2,3-диметил-6-нонапренил-1,4-бензохинона, пластохинона-9 п = 9) (571, имеющего ту же соланезиль-ную боковую цепь, что и менахинон-9 (витамин К2(45>) выделен и идентифицирован пластохинон-10 [58—60 ] с частично насыщенной изопреноидной боковой цепью, аналогичной убихинону-10. [c.233]

    Фотосинтетические пигменты содержатся в протяженной системе внутренних мембран хлоропласта, которые являются местом, где происходит фотосинтез С помощью электронной микроскопии в хлоропласте удалось различить группы замкнутых мешкообразных дисков, названных тилакоидами, которые расположены один над другим, образуя грану (рис. 10 3, S). Внутренний объем, ограниченный мембраной одного тилакоида, известен как локус (lo ulus от лат. — ящичек с перегородками, полочками, ларчик). Концы тилакоидов, находящиеся в контакте со стромой, называют краями (margins), а участки, где два тилакоида плотно прилегают друг к другу, — перегородками (partition). Стопки гран связаны между собой мембранами, которые называют одиночными тилакоидами, или ламеллами стромы. [c.331]

    Сине-зеленые водоросли ( yanophyta или yanoba teria) представляют собой единственную большую группу прокариот, которые способны к фотосинтезу с выделением кислорода, сходному с фотосинтезом у высших растений. Однако тилакоидные мембраны у них находятся не в хлоропластах, а распределены по всей цитоплазме клетки, преимущественно на ее периферии. Фотосинтетические пигменты сине-зеленых водо- [c.353]

    Если Р — число молекул Ог, продуцируемых в 1 с, — число квантов, поглощаемых в 1 с, то /(Я) = Ф(Я)—квантовый выход фотосинтеза. При выделении одной молекулы Ог поглощается 8 квантов. Кривая Ф(Я) для хлореллы показана на рис. 14.5. Характерно красное падение — резкое уменьшение Ф(Я) в области 680 нм. Оно наблюдается и в спектре действия реакции Хилла. Но при зтом хлоропласты продолжают поглощать свет. [c.451]


Библиография для Хлоропласты фотосинтез: [c.153]   
Смотреть страницы где упоминается термин Хлоропласты фотосинтез: [c.263]    [c.137]    [c.278]    [c.232]    [c.236]    [c.352]    [c.136]    [c.40]    [c.54]    [c.317]    [c.178]    [c.150]    [c.191]    [c.87]    [c.166]    [c.351]    [c.367]   
Жизнь зеленого растения (1983) -- [ c.105 ]




ПОИСК





Смотрите так же термины и статьи:

Растения, хлоропласты и фотосинтез

Фотосинтез

Фотосинтез изолированных из клеток хлоропластов

Хлоропласт

Хлоропласты — клеточные органеллы фотосинтеза



© 2024 chem21.info Реклама на сайте