Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки доменная структура

Рис. 1.13. Модель, дающая представление о доменной структуре белков Рис. 1.13. Модель, дающая представление о <a href="/info/810461">доменной структуре</a> белков

    Какие особенности формирования супервторичной и доменной структур белков вам известны  [c.92]

    Доменная структура белков [c.34]

    Биополимеры и другие более сложные биологические объекты, например клетки, образуют большое количество разнообразных наносистем, как с металлсодержащими нанокластерами, так и без них. Белки представляют собой биополимеры, состоящие из полипептидных цепей, построенных из 20 типов аминокислотных остатков. Выделяются 4 уровня структурной организации. Первичная структура соответствует последовательности аминокислотных остатков в полипептидной цепи, которая определяет конфигурацию цепи. Вторичная структура определяется пространственной укладкой атомов, что приводит, например, к сворачиванию полипептидной цепи в виде а-спирали или 3-складок и соответствует конформации в полимерных цепях. Третичная структура соответствует пространственной укладке вторичной структуры в пространственную структуру типа глобулы с размерами от нескольких единиц до десятков нанометров в случае глобулярных белков или вытянутых фрагментов для фибриллярных белков. Четвертичная структура включает образования, состоящие из белковых глобул или отдельных белковых доменов. Белки [c.462]

    С помощью описание выше экспертной системы нами были исследованы 55 аминокислотных последовательностей а/р-доменов глобулярных белков пяти топологических классов. Описание этих последовательностей дано в таблице I. Графическое изображение их топологических структур приведено на рис.4. [c.186]

    Миоглобин и другие глобины не содержат раздельных областей — доменов — в глобуле. Многие белки имеют доменную структуру. На рис. 4.18 показано строение фермента фосфоглицераткиназы. Глобула состоит из двух доменов. Цилиндры /—XII — а-спирали, стрелы А — Ь — -участки. [c.114]

    Так, присоединение гидрофобного или гидрофильного аттрактанта или репеллента к белку-хеморецептору, структура которого, по крайней мере частично, носит черты лиотропного жидкого кристалла (см. гл. 4), сдвигает равновесие между различными доменами белковой молекулы и вызывает конформационные изменения в молекуле и прилегающей к ней мембране бактерии. [c.100]

    Представление о доменной структуре белков дает рис. 1.13. Формирование отдельных доменов в белках протекает независимо друг от друга, что упрощает процесс укладки макромолекулы в пространстве при формировании третичной структуры. [c.66]

Рис. 41. Предполагаемая доменная структура белков семейства trp. Рис. 41. Предполагаемая доменная структура белков семейства trp.

    Результаты проведенных исследований углубляют современные представления об особенностях фотохимических превращений и функциональных нарушений отдельных изоферментов ЛДГ, индуцированных воздействием УФ-излучения. Их необходимо учитывать при изучении первичных и начальных процессов УФ-изменений сложных белков с доменной структурой. Кинетические исследования фотоокисления ЛДГ в присутствии протекторов, акцептирующих активные промежуточные продукты фотопревращений белка, позволят оценить реальный вклад каждой элементарной стадии (реакции) в сложный процесс Уф-модифи-кации субъединичной молекулы этого фермента. [c.200]

    ДОМЕННАЯ СТРУКТУРА И ЕЕ РОЛЬ В ФУНКЦИОНИРОВАНИИ БЕЛКОВ [c.15]

    Благодаря доменной структуре белков легче формируется их трехмерная структура. [c.15]

    Доказанная в эксперименте возможность относительно независимого действия отдельных доменов мультифункционального белка привела в 1989 г. к созданию кассетного гена активатора тканевого плазминогена (АТП) человека. Данный белок формирует пять доменов с различными функциями. Ген АТП (двухцепочечный фрагмент длиной 1095 пн) был синтезирован химико-ферментативно таким образом, что все последовательности, кодирующие домены, оказались разделены участками гидролиза различными рестриктазами. Небольшие изменения, внесенные гфи этом в последовательность АТП, не меняли биологических свойств белка. Кассетная структура гена позволяет комбинировать в любом порядке, делетировать домены АТП и изучать свойства создаваемых вариантов, а также обеспечивает возможность экспрессии и изучения функций индивидуальных доменов АТП. Введение уникальных участков рестрикции в области гена, соответствующие фланкирующим домены участкам белка, позволяет заменять домены изучаемого белка на домены другого белка, т. е. конструировать новые белки с заданным набором функций. Рассмотренный подход применим, по-видимому, к большинству мультидоменных белков. [c.191]

    Книга во многом полемична. Так, в главе 18 рассматривается концепция Л.Б. Меклера о стереохимическом генетическом коде. Несмотря на то что прошло много лет с его первой публикации (а за ней были и другие), идеи Л.Б. Меклера, послужившие основанием для далеко идущих выводов, не получили прямого экспериментального развития. Излагая свой взгляд на причины такого положения, автор впервые дает критический анализ упомянутой концепции. В книге также ставятся под сомнение широко распространенные представления о роли водородных связей в формировании конформаций олиго- и полипептидов, отрицаются иерархичность структурной организации белков (от первичной структуры к вторичной, супервторичной, доменам и полной пространственной структуре) и целесообразность введения понятия "расплавленная глобула" для описания переходного состояния между нативным и денатурированным состоянием глобулярных белков. Несмотря на приводимую при этом весомую аргументацию, вряд ли перечисленные выводы будут легко приняты научной общественностью. Ответственный редактор надеется, что высказанные в томе положения будут замечены коллегами и вызовут дискуссию, которая пойдет на пользу науке. [c.5]

    Было высказано предположение, что экзоны кодируют определенные автономные элементы укладки полипептидной. цепи, представляющие собой функциональные сегменты белковой молекулы, которые сортируются в процессе эволюции. Если процессы такой перетасовки генетического материала, механизмы которых не рассматриваются, идут по районам интронов, то структура экзонов не изменяется и, следовательно, не нарушаются функциональные свойства отдельных белковых доменов. Экзоны могут соответствовать участкам доменов или отдельным белковым доменам, т. е. тем участкам белковой молекулы, которые можно выделить как пространственно делимые структуры, обладающие определенной биологической функцией. Установление раз.меров экзонов во многих генах показало, что главный класс экзонов имеет раз.меры около 140 п. и., что соответствует 40—50 а. о. в молекуле белка. Большая часть белковых доменов, содержащих в среднем 100—130 а. о., складывается из нескольких элементов вторичной структуры ( су-первторичных структурных единиц), кодируемых отдельными экзонами. М-терминальный участок из нескольких гидрофобных аминокислот (сигнальный пептид) секреторных белков, как правило, также кодируется отдельным экзоном. [c.192]

    По прошествии более трех десятилетий со времени расшифровки структур миоглобина и гемоглобина рентгеноструктурный анализ все еще остается единственным прямым методом определения на атомном уровне пространственного строения белковых молекул, их комплексов и доменов. Полученные с его помощью данные по-прежнему служат незаменимой экспериментальной основой изучения структурно-функциональной организации молекул белков. В 1990-е годы этот метод, по-прежнему сохраняя высокий темп экстенсивного развития, позволил приступить к решению принципиально новых задач, представляющих первостепенный интерес для молекулярной биологии. Основная, если не единственная, причина наметившегося качественного роста возможностей кристаллографии белков связана с использованием вместо излучения рентгеновских трубок синхротронной радиации. [c.74]


    Быть может, по этим или иным причинам Коэн, Стернберг и Тейлор [156-158] не стали обращаться к предсказательным алгоритмам, а сразу приступили к реализации второго пункта схемы, выбрав для демонстрации возможностей предлагаемого ими метода белки, изученные рентгеноструктурно, и взяв всю информацию о геометрии вторичных структур непосредственно из эксперимента. Они рассмотрели все способы упаковки -структурных сандвичей в 11 иммуноглобулиновых доменах, содержащих от 6 до 9 -складчатых листов. Для каждого домена рассчитано порядка 10 -10 различных сочетаний опытных вторичных структур. Количество [c.508]

    Молекулярная организация мембран. Структурная основа М. 6-липидный бислой. В продольной плоскости м.б. представляет собой СЛ0ЖН5ГЮ мозаику из разнообразных липидов и белков, причем их распределение по пов-сти М. б. неоднородно. В нек-рых М. б. имеются обширные участки липидного бислоя, практически свободные от белков (напр., в эритроцитах белки занимают только 35% площади пов-сти всей М.б., в микросомах-23%). При высоком содержании белка в М. б. липиды не образ5тот сплошной бислой, а располагаются в виде отдельных вкраплений между белковыми молекулами. Сам липидный бислой в мембране может иметь доменную структуру в результате, напр., сосуществования несмешиваемых липидных фаз, находящихся в двух разл. физ. состояниях - гелевом и жидкокристаллическом. Часть липидов в М. 6. может находиться также в составе т. наз. небислойных фаз (мицеллярная фаза, гексагон. фаза и др.). Ассоциации липидов в М.б. способствует также их взаимод. с многозарядными катионами (Са " , Mg и др.), периферич. белками, нек-рыми мембраноактивными в-вами (напр., гормонами). [c.30]

    Анализ известных белковых структур дает ценные сведения для понимания.механизма свертывания и стабильности белков. В структурах этих белков обнаруживаются шесть уровеней организации. На первом уровне находится аминокислотная последовательность, которая целиком определяет окончательную структуру белка. В структурах белков можно выделить несколько типов упорядоченности формы основной цепи. Это так называемые вторичные структуры, которые составляют второй уровень. Две из таких регулярных структур (а-спираль и 3-складчатый лист) были предсказаны на основе ковалентного строения основной цепи как наиболее простые. Следующие два уровня, сверхвторичные структуры и структурные домены, гораздо более сложны и пока не предсказуемы. На этих уровнях также проявляются вполне определенные закономерности, например такие, как корреляция между близкими по цепи остатками. Эти закономерности не выражаются в каких-либо определенных структурах, а носят весьма общий характер. На двух самых высоких уровнях организации, занимаемых глобулярными белками и агрегатами, сейчас уже делаются попытки некоторых структурных предсказаний. Возможность таких предсказаний основана на том, что нижние структуры, домены для глобулярных белков и глобулярные белки для агрегатов предполагаются внутренне стабильными (в некоторых случаях это подтверждено экспериментом). Характер агрегатов можно предсказать с помощью анализа контактной поверхности глобулярных белков. Это же относится и к предсказаниям строения глобулярных белков по их доменам. Кроме того, свойства поверхности, как это следует из изучения поверхностей раздела белок — белок, имеют важное значение для белкового узнавания. В главе обсуждены некоторые законо- [c.127]

    Белок TF И А был первым эукариотическим регуляторным олипептидом транскрипции с известной аминокислотной последо-ательностью, для которого удалось построит доменную структур-ую модель. В этом белке выявлены 9 повторяющихся, но отличающихся друг от друга доменов — пальцев , каждый из которых включает около 30 аминокислот. Домены содержат инвариантные-участки, включающие два цистеиновых и два гистидиновых остатка, связанных с ионом цинка (рис. 115). Концы разных пальцев -(петли) несут варьирующие аминокислотные остатки, среди которых встречаются положительно заряженные, которые, по-видимому,, способны легко взаимодействовать с ДНК- Как оказалось, подобная структура регуляторного белка закодирована в ряде других генов, кодирующих регуляторные белки эукариот. Так, ген Kruppel (калека), контролирующий развитие дрозофилы, кодирует белок, содержащий четыре подобных домена. Такие домены обнаружены и в белках — рецепторах гормонов. Предполагается, что выступающие связывающиеся с ДНК разные пальцы, соединенные друг с другом гибкими мостиками, осуществляют сразу несколько контактов с ДНК. Такая модель строения TF HI А позволяет предполо- [c.211]

    Исследование первичной структуры мнеломных белков было проведено в конце 60-х годов в лабораториях Р. Портера в Оксфорде и Дж. Эдельмана в Нью-Йорке. Характерной чертой строения молекул иммуноглобулинов является так называемая доменная структура. И легкие и тяжелые цепи упакованы в компактные домены, состоящие примерно из НО аминокислотных остатков и содержащие внутримолекулярные дисульфидные связи (рис. 116). Легкие (каждая содержит около 220 аминокислот) и тяжелые (каж- [c.212]

    Структурный механизм образования блоков. Блочность структуры нативного коллагена может ассоциироваться с известной доменной структурой жидких кристаллов. Другим прпдюром может быть блочность структуры диффундирующей воды в молекулярном сите типа КА. Своеобразие строения фибриллярных белков, конечно, не говорит о сколько-нибудь более глубокой аналогии. Поэтому необходимо выяснить, какие изменения в структуре белка могут привести к образованию описываемых блоков. [c.130]

    Остановлюсь на ряде высказанных в разное время гипотез. Прежде всего возникла идея, что сплайсинг с его способностью объединять разъединенные отрезки ДНК в один ген может играть важнейшую роль в эволюции, в частности в объединении разных генов в один и, следовательно, разных полипептидных цепей в одну. Тем самым сравнительно легко могут возникать новые гены. Эти представления находят подтверждение при сравнении экзон-интронной структуры некоторых генов и так называемой доменной структуры соответствующих им белков. Ряд белков состоит из нескольких доменов, т. е. блоков, разделенных структурно и функционально. Классическим примером является фермент ДНК-полимераза I. Хотя она и представлена одной непрерывной полипептидной цепочкой, но состоит фактически из двух разных ферментов собственно ДНК-полимеразы (синтезирующей ДНК) и эк-зонуклеазы (разрушающей ДНК с конца). Эти два домена образуют две независимые компактные частицы, связанные между собою коротким полипептидным мостиком. Послед- [c.48]

    Если белок содержит ряд структурно сходных повторяющихся доменов, то наблюдается строгое соответствие отдельных экзонов доменам или субдоменам белковой молекулы. Гены, относящиеся к так называемому сверхсемейству генов иммуноглобулинов , содержат разное число экзонов, кодирующих домены полипептидной цепи, каждый из которых включает около ПО а. о. Гомология между отдельными доменами этих белков, выполняющих разные функции в организме, наблюдается на уровне первичной, вторичной и третичной структуры. Гены этого семейства могут содержать один экзон (ген р2-микроглобулина), два или четыре (гены секретируемых антител В-клеток) и, наконец, пять экзонов (ген гликопротеина плазмы человека). р-Кристаллины мыши содержат четыре белковых домена, каждый из которых включает определенный структурный мотив полипептидной цепв , "щ х  [c.192]

    Под третичной структурой Ь понимают расположение его полипептидной цепи в пространстве. Существ, влияние на формирование третичной структуры оказывают размер, форма и полярность аминокислотных остатков. В молекулах глобулярных Б. большая часть гидрофобных остатков скрыта внутри глобулы, а полярные группировки располагаются на ее пов-сти в гидратированном состоянии. Однако ситуация не всегда настолько проста. Связывание белка с др. молекулами, иапр. фермента с его субстратом или коферментом, почти всегда осуществляется с помощью небольшого гидрофобного участка на пов-сти глобулы. Область контакта мембранных Ь с липидами формируется преим. гидрофобными остатками. Третичная структура многих Ь составляется из иеск. компактных глобул, наз. доменами (рис. 3). Между собой домены обычно бывают связаны тонкими перемычками -вытянутыми полипеп-тидньи и цепями. Пептидные связи, расположенные в этих цепях, расщепляются в первую очередь при обработке Б. [c.249]

    Отрезки легких и тяжелых цепей И. примерно в ПО аминокислотных остатков свернуты в относительно независимые компактные глобулы (домены), каждый из к-рых содержит один дисульфидный мостик легкие цепи содержат два домена (вариабельный и постоянный), тяжелые - четыре или пять (в зависимости от класса И.), один из к-рых вариабельный. По данным рентгеноструктурного анализа, осн. тип укладки цепи в доменах соответствует антипарал-лельной Р-структуре (см. Белки). [c.216]

    Характерной особенностью молекул более крупных белков является наличие четко выраженной р-структуры в центральной части молекулы. Примером может служить фермент карбоксипептидаза А, состоящий из 307 остатков (рис. 2-6, внизу) [26]. Р-Структура, изогнутая в виде лопасти левого пропеллера, образует своеобразную жесткую основу , к которой прикрепляются остальные части молекулы. Многие белки содержат как участки, имеющие параллельную р-структуру, так и участки с антипараллельной р-структурой. Для ряда крупных белков, например для глицеральдегидфосфатдегидрогеназы (334 остатка), характерно присутствие четко различимых доменов (двух или более), соединенных друг с другом шарнирными участками. [27]. Преобладающей структурой в каждом из двух доменов является складчатый р-слой (рис. 2-10), Обратите внимание, что ЫАО+-связывающий домен имеет почти всюду параллельную р-структуру, тогда как каталитический домен содержит как параллельные, так и антипараллельные цепи. Оба домена имеют а-спиральные участки, расположенные по обе стороны от центрального слоя. [c.96]

    Правила структурной организации глобулярных белков рассмотрены Шульцем [81]. Согласно им, в структ фе таких белков следует выделять большее число уровней организации. Иерархия берет свое начало от аминокислотной последовательности. Затем следует вторичная структура с регулярной укладкой полипептидной цепи, характеризующейся максимальным образованием водородных связей. Вторичная структура может образовывать до 75% всей полипептидной цепи. Иногда в молекуле белка можно выделить агрегаты вторичной структуры (сверхвторичная структура), являющиеся регулярными образованиями из нескольких участков полипеп-тидных цепей, например двойная а-спираль или складчатый лист-спираль. Пример более высокой ступени организации глобулярных белков — образование доменов. Они возникают у крупных белков и характеризуются как независимые пространственные структуры. Иммуноглобулины, например, образуют при соответствующем сворачивании полнпептидных цепей от 2 до 4 доменов. В химотрипсине активный центр находится внутри, между двумя доменами. В данном случае домены имеют структуру складчатого листа-цилиндра и связаны один с другим лишь одной полипептидной цепью. И наконец, глобулярные белки, построенные из нескольких доменов, могут упаковываться в еще более крупные структурные образования. Возникающие при этом агрегаты обычно построены симметрично, причем структура входящих в их состав мономеров, вероятно, не меняется. [c.364]

    ЛИЗ белка Бенса — Джонса с разрешением 0,35 нм (рис. 3-46). Можно видеть оба домена с вариабельной областью (всего 111 аминокислотных остатков) и константной областью (всего 105 аминокислотных остатков). Каждый из доменов содержит по два слоя антипараллельных отрезков цепи, представляющих собой (3-структуры и показанных на рисунке стрелками. Оба домена добавочно стабилизируются днсуль-фидными связями (показаны черными) и связаны между собой через растянутую структуру. [c.427]


Смотреть страницы где упоминается термин Белки доменная структура: [c.104]    [c.104]    [c.309]    [c.310]    [c.50]    [c.55]    [c.54]    [c.228]    [c.193]    [c.217]    [c.218]    [c.186]    [c.243]    [c.210]    [c.254]    [c.54]    [c.507]    [c.522]    [c.526]   
Основы биохимии (1999) -- [ c.73 , c.74 , c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Белок белки структура

Доменные структуры

Домены

Структура белка



© 2025 chem21.info Реклама на сайте