Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурно-функциональная организация молекул ДНК

    По прошествии более трех десятилетий со времени расшифровки структур миоглобина и гемоглобина рентгеноструктурный анализ все еще остается единственным прямым методом определения на атомном уровне пространственного строения белковых молекул, их комплексов и доменов. Полученные с его помощью данные по-прежнему служат незаменимой экспериментальной основой изучения структурно-функциональной организации молекул белков. В 1990-е годы этот метод, по-прежнему сохраняя высокий темп экстенсивного развития, позволил приступить к решению принципиально новых задач, представляющих первостепенный интерес для молекулярной биологии. Основная, если не единственная, причина наметившегося качественного роста возможностей кристаллографии белков связана с использованием вместо излучения рентгеновских трубок синхротронной радиации. [c.74]


    СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ МОЛЕКУЛ ДНК [c.271]

    СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ МОЛЕКУЛ РНК [c.277]

    Основная причина малой эффективности физико-химических методов исследования пространственного строения ангиотензина II, как и других олигопептидов, связана с тем, что для изучения структурно-функциональной организации этих соединений недостаточно знания лишь самой выгодной по энергии конформации в случае белков, или представления о среднестатистическом конформационном состоянии молекулы в случае синтетических пептидов [28, 29]. Здесь требуется количественная оценка геометрических параметров ряда структур, их конформационных возможностей и вероятности реализации в различных условиях. Получение такой информации, как правило, находится за пределами чувствительности и интерпретационных возможностей физико-химических методов. Более того, из-за сложности соединений и недостаточной разработанности физических основ соответствующих явлений редко когда хотя бы один из методов позволяет однозначно и достаточно полно описать даже одно, доминирующее в растворе конформационное состояние пептида, используя лишь результаты собственных измерений. [c.270]

    Естественно желание теоретиков - сопоставить результаты своих расчетов с опытными данными. Однако эта простая процедура в данном случае невыполнима по ряду причин принципиального и методологического характера. Существующие физико-химические методы исследования пространственного строения олигопептидов являются не прямыми, а косвенными. Поэтому данные теоретического анализа приходится сравнивать не с наблюдаемыми непосредственно фактами, а с результатами их обработки, которая из-за несовершенства соответствующих теорий вносит в трактовку фактов элемент субъективности. Возможности используемых методов в данном случае неадекватны самой постановке задачи, заключающейся в определении геометрии ряда конформаций довольно сложной молекулы и в оценке вероятности их реализации в различных условиях. Получение информации в таком объеме, а именно это требуется для последующего изучения структурно-функциональной организации природ- [c.278]

    Используемый эмпирический подход к поиску структурно-функциональной организации в принципе, а не только в силу сложности объектов исследования, не может обеспечить как в качественном, так в и количественном отношении получение всей необходимой информации о пространственной организации и динамических конформационных свойствах молекул Природных олигопептидов. [c.289]


    Определение структурной организации секретина, проникновение в область его взаимоотношений с рецепторами, принадлежащими разным системам организма, выяснение кинетики и динамики механизмов этих отношений, понимание на атомно-молекулярном уровне назначения секретина в их реализации, умение целенаправленно влиять на его регуляторные и другие физиологические действия и, наконец, создание соответствующих фармацевтических препаратов - все это не может быть достигнуто традиционным путем, т.е. на чисто эмпирической основе и при использовании исключительно экспериментальных методов, как бы разнообразны и совершенны они не были. Даже первый шаг в сторону сознательного количественного изучения структурно-функциональной организации секретина, а именно исследование конформационных возможностей Молекулы и определение набора ее низкоэнергетических пространствен- [c.373]

    Сформулированные принципы структурной организации природных олигопептидов являются необходимой основой для решения задачи структурно-функциональной организации этих соединений, обсуждаемой в следующем томе. Сейчас же важно отметить, что установление таких принципов подвело наше рассмотрение непосредственно к самому ответственному моменту исследования одной из фундаментальных задач проблемы белка - завершающему этапу изучения структурной организации белковых молекул и к решению вопроса о возможности априорного расчета их нативных трехмерных структур на основе известной аминокислотной последовательности, предложенной автором теории и разработанного им метода расчета. Перед обсуждением результатов конформационного анализа белков и количественной оценки функций дальних взаимодействий еще раз напомню о роли ближних и средних взаимодействий в структурной организации олигомерной аминокислотной последовательности. [c.403]

    Высоко оценивая значимость кристаллографических и иных опытных данных о белках, следует тем не менее иметь в виду их принципиальную недостаточность в решении ряда общих и многих конкретных вопросов структурной и структурно-функциональной организации. Поэтому теоретический конформационный анализ неизбежно должен стать неотъемлемой составной частью всех исследований морфологических и биологических свойств белковых молекул. Для этого необходимо, чтобы расчетный метод был бы менее трудоемким и более быстрым, чем изложенный в книге метод априорного расчета. Надежность существующего метода подтверждается хорошим совпадением результатов расчета с опытными данными. Точность рассчитанных априорно координат атомов нейротоксина II и панкреатического трипсинового ингибитора не уступает точности рентгеноструктурного анализа белков с разрешением -2,0 А. О его скоростных качествах можно судить по следующему примеру. Так, полный расчет трехмерной структуры белка, имеющего -100 аминокислотных остатков, проводится двумя-тремя сотрудниками, владеющими методом, с помощью двух современных персональных компьютеров за -4 месяца, [c.591]

    Представления о доменной организации молекулы репрессора были подтверждены с помощью биохимических методов. При обработке очищенного нативного репрессора протеолитическим ферментом трипсином N-концевые полипептиды отщепляются от тетрамерного кора . Оставшийся после этого кор-белок может связывать индуктор, но не способен связываться с ДНК. Таким образом, N-концевые участки полипептидных цепей (протяженностью около 50 аминокислотных остатков), вероятно, выступают за пределы относительно компактного тетрамерного кора и могут внедряться в бороздки двойной спирали ДНК, узнавать и прочно связываться с операторной последовательностью. Как мы убедимся в дальнейшем, такой способ структурно-функциональной организации характерен для многих белков, специфически узнающих определенные последовательности ДНК. [c.179]

    Итак, с появлением рентгеноструктурного анализа ферментов не произошел переход от умозрительных представлений о ферментативном катализе к строгому количественному описанию этого явления. Не изменилась также направленность биокаталитических исследований, по-прежнему следующих от функции к структуре, что неслучайно, поскольку результатом рентгеноструктурного исследования может быть лишь знание морфологии биосистем атомно-молекулярного уровня, которое само по себе не является конечной целью изучения ферментов. Морфология объекта — это всегда нечто предварительное и совершенно необходимое для последующего изучения структурной и структурно-функциональной организации биосистем. Выяснение с помощью рентгеноструктурного анализа пространственного строения многих сотен молекул ферментов не решило проблему биокатализа, но сделало реальным разработку подхода к изучению ферментативного катализа в направлении от структуры к функции и априорному количественному описанию механизма каталитической реакции. Благодаря развитию кристаллографии белков проблема создания общей теории биокатализа и соответствующих методов расчета впервые обрела форму подлинно научной проблемы, решаемой на уровне современных естественнонаучных знаний. [c.107]


    Выбранный для первого в научной практике априорного расчета белковой трехмерной структуры объект, безусловно, должен быть низкомолекулярным, однодоменным, состоять из одной полипептидной цепи и являться прямым продуктом биосинтеза. Далее, его нативная конформация должна включать систему дисульфидных связей, поскольку в настоящее время эти связи служат, если и не единственным, то, во всяком случае, самым надежным источником информации о структуре промежуточных метастабильных состояний. Кроме того, для выяснения принципов пространственной организации белков существенный интерес представляют количественные оценки основных факторов стабилизации двух сравнительно часто встречающихся регулярных форм пептидной цепи - а-спирали и -структуры. Поэтому желательно, чтобы пространственная структура выбранного для расчета белка содержала наряду с неупорядоченными участками также вторичные, регулярные структуры обоих видов. Понимание структурной организации белковых молекул не является конечной целью, а необходимо для последующего изучения их биологического действия, т.е. решения проблемы структурно-функциональной организации белков. Поэтому важно, чтобы белок, выбранный в качестве простейшего для изучения его структурной организации, оказался бы и удачным модельным объектом для установления принципов взаимосвязи между структурой и функцией. Он должен обладать простой и хорошо изученной экспериментально функцией. [c.427]

    При первичном взаимодействии (физическая стадия) ионизирующего излучения электромагнитной или корпускулярной природы с атомами вещества образуются положительно и отрицательно заряженные ионы, а также возбужденные электронные состояния атомов и молекул. В элементарном акте ионизации расходуется около 10—12 эВ энергии ионизирующей радиации (потенциал ионизации). Бели передаваемая электрону энергия больше этой величины, то он сам становится источником ионизации других атомов если меньше потенциала ионизации, имеет место возбуждение атома (молекулы). Физико-химическая стадия воздействия радиации на биообъекты существенно зависит от особенностей их структурно-функциональной организации. При этом большое значение имеет процесс радиолиза воды  [c.143]

    Активные формы природных аминокислотных последовательностей, согласно предложенным мною количественным теориям структурной и структурно-функциональной организации белковых молекул [56, 57], не относятся к какому-то особому состоянию материи, свойства которой, как физические, так и химические, не подчиняются законам, установленным при изучении иных систем, в том числе неорганических Исключительность активных форм белков не в принципиальной новизне природы их физических и химических свойств, сколь бы необычными они ни казались, а в самом факте образования таких форм, в неизбежности этого явления только у природных аминокислотных последовательностей (и ограниченного круга рибонуклеотидных последовательностей) [c.56]

    Первая задача заключается в изучении структурной организации и создании теории, устанавливающей логическую и количественную взаимосвязь между аминокислотной последовательностью и пространственной структурой белка, предсказывающей его конформационные и электронные свойства. Цель следующей задачи состоит в изучении физико-химических свойств белка и, основываясь на знании не только геометрии, но и структурной организации белковой молекулы, выявлении принципов ее функционирования, иными словами, разработке теории структурно-функциональной организации белка. Третья задача направлена на создание общей теории рассматриваемой функции (здесь биокатали-тической), учитывающей решения предшествующих задач, особенности ферментативного катализа, физико-химические основы этого явления и возможности современного естествознания. [c.77]

    Первыми природными объектами рассмотрения будут брадикининпоген-цирующие пептиды (БПП). Речь пока пойдет только об их конформационных возможностях вопросы связи между структурой и биологическими свойствами, т.е. структурно-функциональной организации олигопептидов, обсуждаются в следующем томе. Отметим лишь, что молекулы БПП усиливают и пролонгируют депрессорный эффект брадикинина на кровяное давление, ингибируют ферменты, расщепляющие кинин, а также являются эффективными ингибиторами пептидил-дипептидазы - фермента, катализирующего превращение ангиотензина I в повышающий кровяное давление ангиотензин II. Самыми эффективными представителями этой группы являются природные пента-, нона- и декабрадикининпо-тенцирующие пептиды, структурная организация которых вместе с некоторыми их синтетическими аналогами рассматривается ниже [1,2]. [c.256]

    Каковы же ближайшие перспективы Можно ли, продолжая изучение Met- и Ьеи-энкефалинов и других пептидных гормонов в том же плане, получить со временем полную и объективную количественную информацию об их структурной организации и зависимости между структурой и функцией Чтобы ответить на этот вопрос, предположим, что такой информацией мы уже располагаем, и попытаемся представить, что она могла бы дать для понимания структурно-функциональной организации энкефалинов и описания механизмов их многочисленных функций. Как можно было бы логически связать данные, например, о 10 низкоэнергетических конформациях каждого нейропептида с приблизительно таким же количеством его функций Очевидно, установить прямую связь при неизвестных пространственных структурах рецепторов не представляется возможным. Число возможных комбинаций, особенно если учесть существование нескольких рецепторов (ц, а,5) для осуществления только одной опиатной функции энкефалина, слишком велико, чтобы надеяться даже в гипотетическом идеальном случае найти искомые соотношения интуитивным путем. Многие полагают, что к достижению цели ведет косвенный путь, заключающийся в привлечении синтетических аналогов, изучении их структуры и биологической активности. В принципе подобный подход вот уже не одно столетие применяется в поиске фармацевтических препаратов. Однако такой путь в его сегодняшнем состоянии не только длителен, сложен и дорогостоящ, но, главное, он не может привести к окончательному решению проблемы. Замена аминокислот в природной последовательности, укорочение цепи или добавление новых остатков, иными словами, любая модификация химического строения природного пептида, неизбежно сопровождается изменением конформационных возможностей молекулы и одновременно затрагивает склонные к специфическому взаимодействию с рецептором остатки, что сказывается на характере внутри- и межмолекулярных взаимодействий, в том числе на устойчивости аналогов к действию протеиназ. Для учета последствий химической модификации на характер внутримолекулярных взаимодействий можно использовать теоретический конформационный анализ и методы кванто- [c.352]

    Большое количество полученных в последние годы экспериментальных данных свидетельствует в пользу гетерогенности рецепторов АТ II, и в дальнейшем изложении будем исходить именно из этого предположения [379-382]. Полифункциональность АТ II и гетерогенность его рецепторов можно связать с молекулярной структурной организацией гормона, изученной теоретически. Его предрасположенность к реализации ряда функций проявляется в существовании в нативных условиях нескольких близких по энергии и легко переходящих друг в друга пространственных форм. Высокая эффективность и строгая избирательность взаимодействий АТ II с различными рецепторами связаны с тем, что каждая его функция реализуется посредством актуальной только для данного рецептора конформации из состава самых предпочтительных структур свободной молекулы. Таким образом, поиск структурно-функциональной организации АТ II сводится к выяснению для каждой биологической активности пептида актуальной конформации. Для решения задачи в условиях отсутствия необходимых данных о потенциальных поверхностях мест связывания требуется использование дополнительной информации. В качестве такой информации, как правило, привлекаются данные по биологической активности синтетических аналогов природных пептидов. Однако при формировании серии аналогов без предварительного изучения конформационных возможностей как природного пептида, так и его искусственных аналогов в ходе исследования по существу случайным образом ищется прямая зависимость между отдельными остатками аминокислотной последовательности гормона и его функциями. Поскольку стимулированные гормоном аллостери-ческие эффекты возникают в результате не точечных, а множественных контактов между комплементарными друг другу потенциальными поверхностями лиганда и рецептора (иначе отсутствовала бы избирательность гормональных действий), нарушение функции при замене даже одного остатка может быть следствием ряда причин. К ним относятся исчезновение нужной функциональной группы, потеря необходимых динамических свойств актуальной конформации, запрещение последней из-за возникающих при замене остатков стерических напряжений, смещение конформационного равновесия из-за изменившихся условий взаимодействия с окружением и т.д. Следовательно, случайная замена отдельных остатков не приводит к решению задачи структурно-функциональной организации гормонов. Об этом свидетельствует отсутствие в течение нескольких десятков лет заметного прогресса в ведущихся с привлечением множества синтетических аналогов исследованиях зависимости между структурой и функцией АТ II, энкефалинов и эндорфинов, брадикининпотенцирующих пептидов, а также ряда других. Отсюда следует неизбежный вывод о необходимости привлечения к изучению структурно-функциональных отношений у пептидных гормонов специального подхода, который позволил бы отойти от метода проб и ошибок и при поиске синтетических аналогов делать сознательный выбор для их синтеза и биологических испытаний. [c.567]

    У бобовых растений синтез легоглобинов кодируется семейством из нескольких сцепленных Lb-генов. В настоящее время подробно изучена структурно-функциональная организация этих генов выявлена их ин-трон-экзонная структура, изучена организация промоторов, расположение кодирующих и некодирующих участков. Экспрессия Lb-генов в клубеньках, по всей видимости, основана на обмене партнеров регуляторными сигналами. Об этом говорит присутствие в промоторах этих генов последовательностей, которые гомологичны некоторым бактериальным промоторам и могут быть мишенями для сигнальных молекул, поступающих в растительные клетки от бактерий. Удалось выявить и бактериальные ДНК-связывающие белки, которые взаимодействуют с промоторами легоглобиновых генов. [c.179]

    Чтобы понять всю сложность исследований, проводимых учеными-биохимиками при изучении структурно-функциональной организации живых объектов, в качестве иллюстрации приведем лищь один пример, поясняющий строение и основы жизнедеятельности простейшей бактериальной клетки Es heri hia соН (в дальнейшем сокращенно — Е. соН). Клетка Е. соИ (рис. В.З) имеет весьма скромные размеры длина — 3, а диаметр — 1 мкм, ее масса приблизительно 6 10 г, две трети которой составляет вода. Остальное вещество клетки образовано белками, свободными аминокислотами, нуклеиновыми кислотами, жирами и углеводами. Клетка состоит из 40 млн больших и средних молекул, участвующих вместе с малыми молекулами в 2—5 тыс. типов химических процессов, многие из которых протекают в 20 — 30 стадий. В клетке содержится около 10 тыс. рибосом, на которых непрерывно синтезируется несколько тысяч типов белков, причем каждая рибосома собирает в среднем одну молекулу белка за 1 с. Сборка представляет собой многостадийную операцию, во время которой несколько сотен аминокислот сшиваются в определенном порядке за счет образования пептидных связей, и включает стадии подбора аминокислот, расстановки их по местам, удаления молекулы воды в процессе образования пептидных связей. Поэтому одновременно в клетке содержится около миллиарда аминокислот, из которых только 1 % входит в состав белков, а остальные находятся в работе. Основная информация о химической организации клетки записана в ДНК буквами такой записи являются триплеты азотистых оснований. В рассматриваемой нами клетке молекулы ДНК содержат 2—5 млн триплетов, т. е. до 15 млн оснаваний, расположенных в строго определенном порядке (для сравнения одна молекула ДНК клетки человека содержит приблизительно 3 млрд оснований). [c.28]

    К началу 1970-х годов феноменологическая стадия исследования функционирования мышц была в основном завершена стали известны общая схема процесса, его основные участники и источник энергии [442—445]. Дальнейшее изучение заключалось в поиске ответов на вопросы о том, каков молекулярный механизм сокращения мышц, как на молекулярном уровне совершается трансформация химической энергии гидролиза АТР в механическую работу и каким образом нервный импульс приводит в движение мышечные волокна. Содержание процесса, спонтанно протекающего в клетке или организме и, следовательно, сопровождаемого понижением свободной энергии, есть не что иное, как реализация потенциальных возможностей участвующих в нем молекул. Поэтому, какой бы ни был выбран подход к решению вопросов, связанных с механизмом работы биосистемы, он непременно должен включать изучение структурной и структурно-функциональной организации взаимодействующих молекул в случае молекулярного механизма сокращения мышц - организации прежде всего молекул актина и миозина, главных белковых компонентов миофибриллы, а также актино-миозиновых макромолекулярных комплексов. Изучение начинается с [c.121]

    Отсутствие синапсов у растений говорит о том, что эти соеданения, скорее всего, принимают учасхж во внугрию1еточной медиации. Данные, полученные в опытах по совместному действию биомедиаторов и их антагонистов на РЭП и циклоз, подтвердили наличие центров взаимодействия с молекулами катехоламинов, подобных по структурно-функциональной организации а-или р-рецепторам животных. [c.117]

    Векторные молекулы играют важнейшую роль на этапе клонирования ш vivo изучаемых последовательностей ДНК. Конкретные векторы будут рассмотрены в дальнейшем для каждой генно-инженерной системы отдельно. Использование клонирующих векторов позволяет получать необходимый фрагмент ДНК в индивидуальном состоянии и в препаративных количествах. Это подняло на качественно новый уровень исследования структурно-функциональной организации геномов как прокариотических, так и эукариотических организмов (см. 1.7). Разработка и совершенствование экспрессирующих векторов позволяет все с большей определенностью создавать штаммы — суперпродуценты чужеродных белков. [c.32]

    После того как бьша установлена структурно-функциональная организация ряда токсинов бактериального и растительного происхождения, стали предприниматься попытки создания иммунотоксинов. Особенно активно для этих целей использовали рицин и, в меньшей степени, дифтерийный токсин. Оказалось, что замена Б-субъединицы различными молекулами (гормонами, факторами роста, антителами) приводит к формированию гибридных моле л, у которых специфичность связывания с клетками изменена, но токсический эффект А-субъ-единицы сохранен. Такие белки не столь токсичны для организма в целом, как природный токсин, но высокотоксичны для клеток-мише-ней. Важно отметить, что на клетках, у которых нет соответствующих рецепторов, токсического эффекта они не проявляют. [c.195]

    В последующих главах рассматриваются результаты конформацион-1 0го анализа большой серии природных олигопептидов. Их пространст- енное строение практически полностью определяется взаимодействиями ежду близко расположенными в цепи остатками, и поэтому они представляют собой естественные объекты исследования средних взаимодействий. Здесь нельзя было ограничиться анализом единичных примеров в силу по крайней мере двух обстоятельств. Во-первых, изучение конформационных возможностей природных олигопептидов является, как станет ярно позднее, самым ответственным и сложным, но в то же время 1 иболее интересным этапом на пути к априорному расчету трехмерных структур белков. Очевидно, понимание пространственного строения и механизма спонтанной, быстрой и безошибочной укладки белковой последовательности в нативную конформацию невозможно без установления инципов пространственной организации эволюционно отобранных низко- лекулярных пептидов. Между природными олиго- и полипептидами нет четко очерченных границ, и количественная конформационная теория лее простых молекул является естественной составной частью конформационной теории более сложных соединений той же природы. Во-вторых, Й1ание пространственной организации и динамических конформационных свойств природных олигопептидов - гормонов, антибиотиков, токсинов и т.д. - необходимо -вакже для изучения молекулярных механизмов узнавания, действия и регуляции биосистем, выявления структурно-функциональных особенностей пептидов и белков. [c.233]

    Основа генетического родства ароматических фракций масел, смол и асфальтенов заключается в единстве принципов структурно-молекулярной организации соответствующих характеристических фрагментов, которые включают однотипные нафтеногйрома-тичвокие конденсированные системы из 4-6 циклов (. ), имеющих примерно одинаковую степень компактности ( ) /I/. Основные отличия в химическом составе различных фракций состоят в количественных значениях таких структурных параметров, как среднее число фрагментов в молекуле (-V), степень ароматизации полициклической структуры фрагмента ), средняя длина алифатических замеогигелей и их количество во фрагменте, содержание гетероциклов и функциональных групп во фрагменте. [c.215]

    Основная биологическая роль серы заключаеюя в создании определенной структурной и функциональной организации живой клетки. Серосодержащая сульфгидрильная группа является важный структурный элементом белка на молекулярном уровне. Образующиеся сульфидные мостики обусловливают вторичную и тре ичную структуры белковой молекулы. Большов значение имеют 5Н-группы и в надмолекулярной организации живой материи /I0,I8,4I, f2,44, 53/. [c.117]

    На основании интегрального структурного группового анализа и большого количества экспериментальных данных показана [44, 45] принципиальная возможность установления химического строения фрагментов молекул масел, смол и асфальтенов и определены количественные аспекты их генетического родства. Оно заключается в единстве принципов структурно-молекулярной организации характеристических фрагментов, составляющих молекулы этих основных фракций ВМСН. Эти фра<гменты включают однотипные нафтеноароматические (или гетероароматические) конденсированные системы, сопряженные с алифатическим окружением и имеющие примерно одинаковую степень компактности. Основные отличия в химическом составе различных фракций заключаются в различных количественных значениях таких структурных параметров, как среднее число фрагментов в молекуле, степень ароматичности полициклической структуры фрагмента средняя длина алифатических заместителей и их количество во фрагменте и, наконец, содержание гетероциклов и функциональных групп во фрагменте. В табл. 3 приведены вероятностные структурные характеристики молекул различных фракций гудрона р0М1а Шкинск0 й нефти [45]. [c.13]


Смотреть страницы где упоминается термин Структурно-функциональная организация молекул ДНК: [c.329]    [c.55]    [c.130]    [c.138]    [c.358]    [c.329]    [c.4]    [c.506]    [c.591]   
Смотреть главы в:

Химические основы жизни -> Структурно-функциональная организация молекул ДНК




ПОИСК





Смотрите так же термины и статьи:

РНК структурная организация

Функциональность молекул



© 2025 chem21.info Реклама на сайте