Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись азота взаимодействие с углеводородами

    Химические реакции, осуществляемые в процессе создания контролируемых атмосфер из СНГ в смеси с воздухом, весьма разнообразны. Они обязательно сводятся к удалению кислорода. Помимо остаточного кислорода и азота защитные атмосферы в различном соотношении содержат двуокись и окись углерода, водород, пары воды и углеводороды. Дальнейшее изменение состава газовой среды требует специальных реакций. Поскольку двуокись углерода может взаимодействовать с определенными металлами и углеродом, содержащимся в стали, ее содержание в этой атмосфере необходимо снижать или полностью исключать. Для обеспечения взаимодействия между углеродом и поверхностью сплава металла (карбюризация) дополнительно может быть конвертирован пропан, а для нитрирования (азотирования) поверхности стали — введен аммиак. При термообработке стали нежелательно иметь высокую точку росы избыточной влаги, поэтому перед подачей на термообработку газы следует предварительно осушать, а окись углерода удалять во избежание поверхностного науглероживания низкоуглеродистых марок стали. [c.318]


    Промотирующее действие на тетраэтилсвинец простейших мо-нокарбоновых кислот мы объясняем образованием из атомарного свинца и паров кислоты солей четырехвалентного свинца. Известно, что такие соли, например татраацетат свинца РЬ(ОСОСНз)4, необычайно легко реагируют с гидроперекисями углеводородов [299]. Реакция идет бурно и приводит к полному разложению гидроперекисей. Судя по промотирующему действию кислот в двигателе, процесс образования солей свинца и их взаимодействие с перекисями, видимо, имеют некоторое преимущество в скорости по сравне1шю с прямой реакцией между атомарным свинцом и гидроперекисями углеводородов. Подавлению детонации способствуют также некоторые легко окисляющиеся ненасыщенные соединения. К ним относится окись азота. [c.164]

    Сероводород вызывает сильное коррозионное разрушение аппаратуры, ухудшает нормальную смазку цилиндров компрессора, отравляет катализатор, попадая в азотоводородную смесь. Окись азота окисляется до NOj, которая взаимодействует с непредельными углеводородами, образуя нестойкие взрывоопасные соединения, отлагающиеся в аппаратуре. Двуокись углерода и нафталин при охлаждении газа выделяются из него в виде кристаллов, забивающих аппаратуру, трубопроводы и арматуру. В коксовом газе содержатся также примеси аммиака, который оказывает сильное коррозионное действие на медную аппаратуру. [c.161]

    Замедляющее действие окиси азота [18] связано, видимо, с тем, что она соединяется с органическими радикалами, образуя нитросоединения. Ускоряющее же действие связано с тем, что, будучи скрытым радикалом, окись азота может, хотя и с значительной энергией активации, вступать как радикал в реакцию с исходным веществом и порождать, таким образом, первичные радикалы цепи. Окись азота производит ускоряющее действие и на реакции окисления ух леводородов, способствуя зарождению первичных радикалов, видимо, за счет взаимодействия с исходными углеводородами. [c.25]

    Доказано, что при образовании на металле сплошного монослоя водорода или кислорода на 1 атом водорода или кислорода приходится 1 атом поверхности металла. При хемосорбции азота, окиси углерода, углеводородов образуются более сложные сорбционные соединения. Окись углерода может образовать монослой путем такого взаимодействия атомов - [c.198]

    При втором кинетическом исследовании была применена статическая система. Фтор помещают в стеклянный резервуар следует отметить, что это недостаточно строгий метод проведения реакции, так как фтор, хотя и медленно, но непрерывно реагирует со стеклом, образуя окись фтора и четырехфтористый кремний. Фтор, разбавленный азотом или двуокисью углерода, поступает в реактор, смешивается с углеводородом и взаимодействует с ним при пониженном давлении. Интересно, что фтор реагирует самопроизвольно с незамещенными углеводородами даже при низких температурах. Может показаться, что это подтверждает предложенный Миллером цепной механизм инициирования (см. стр. 383), но, если учесть очень низкие значения энергий активации нормальной атаки атомов фтора, а также степень диссоциации молекул фтора, оказывается, что такое допущение не является строгим. Способы, примененных в обоих приведенных выше работах, пригодны только для кинетических исследований и не могут быть использованы в синтезе фторированных соединений. Возможно, однако, что технику проточных опытов можно разрабатывать и для получения частично фторированных производных углеводородов. [c.405]


    Характер взаимодействия в значительной степени зависит от электронной структуры твердого катализатора. Значительной каталитической активностью обладают, например, металлы четвертого, пятого и шестого периодов таблицы Менделеева, имеющие недостроенную -оболочку электронов. Активны также соединения этих металлов. К группе каталитических реакций окислительно-восстановительного типа относятся такие процессы, как окисление 80г в 50з при получении серной кислоты, окисление аммиака до окиси азота в производстве азотной кислоты, очень многие реакции частичного окисления органических веществ, например этилена в окись этилена, гидрогенизация, дегидрогенизация, ароматизация и циклизация углеводородов и многие другие. [c.15]

    Наоборот, окись углерода и метан могут вызывать процесс науглероживания сталей. Противоположные тенденции водорода к обезуглероживанию и окиси углерода и углеводородов к науглероживанию могу при удачном соотношении компонентов защитной атмосферы в значительной степени нейтрализовать друг друга. Применяемые на практике инертные атмосферы обычно имеют основным компонентом азот с большими или меньшими количествами примесей Нг, СО и СН4. При этом учитывается также, что при больших содержаниях в смеси Н2, СО и СН4 такие атмосферы делаются взрывоопасными. Термодинамическая возможность протекания процесса окисления металлов при повышенных температурах, при взаимодействии их с кислородом может быть определена по соотношению парциального давления кислорода и упругости диссоциации окисла металла при данной температуре (см. главу П1). [c.117]

    В 1936—1937 гг. появились работы по Н1ггр0ванию пентанов и бута-нов в газовой фазе азотиой кислотой удельного веса 1.5. По данным Бахмана [7, 8. 9), этот процесс лучше идет в присутствии галогенов нли кислорода, которые способствуют образованию низкочолекулярных нитро-ларафинов. Механизм действия эт х добавок состоит в образовании свободных радикалов углеводородов, возникающих через взаимодействие углеводорода с галогеном или кислородом. Кроме того, галогены связывают окись азота, препятствующую нитрованию. [c.211]

    Образование смолистых азотсодержащих частиц в светильном газе — еще один пример образования аэрозолей при химическом взаимодействии в газовой фазе Взаимодействие небольших количеств окиси азота с некоторыми ненасыщенными углеводородами в присутствии кислорода приводит к образованию вязкой жидкости с очень низким давлением пара Ее можно наблюдать в виде тумана в газгольдере, содержащем газовую смесь Окись азота реагирует не сразу, а только после некоторого индукционного пе риода зависящего от концентрации углеводорода и кислорода, но не окиси азота Баджер и Драйден показали что в статических усповиях первоначапьно образовавшиеся амикроскопические частицы продопжают расти главным образом за счет конденсации паров смолы из газовой фазы Спустя значительное время после окончания индукционного периода размер частиц будет зависеть от числа частиц, образовавшихся в начальный период спонтанной конденсации, и от концентрации окиси азота [c.38]

    Понимание проблемы состояния газов в металлах необходимо для выбора методов их определения, способов отбора проб и подготовки последних, а также для оценки газосодержания и точности аналитических результатов. Определение газов в металлах — это определение составляющих, которые при первоначальном взаимодействии с металлом находятся в газообразном состоянии, либо выделяются из металла в этом состоянии. Поэтому обычно под газами в металлах подразумеваются находящиеся в них кислород, азот и водород. Кроме того, к таким газам могут быть отнесены вода, углекислый газ, окись углерода, низшие углеводороды, инертные газыи другие, а также, в зависимости от технологии изготовления металла, сера (из ЗОз или НгЗ), углерод (из углеродсодержащих газов) и т. д. Образец для определения газов в большинстве случаев является куском твердого металла. В тех случаях, когда определение газов производится непосредственно из жидкого металла, конечным состоянием пробы также яв.ляется твердая фаза [1]. Поскольку в настоящее время теория жидкого состояния вообще еще очень мало разработана (в особенности для металлов), то и состояние газов изучается пока главным образом в твердых металлах. [c.5]

    Можно получить органические соединения из карбида кальция, минуя, промежуточное образование ацетилена или цианамида кальция. В одной из работ [53] утверждалось, что при воздействии сухого водяного пара при 130° С степень превращения составляет только 20% за два часа и что не происходит никакого взаимодействия при 450° С, однако при пропускании водяного пара в смеси с азотом над кдрбидом [54] при 100—650° С образуются метан, этилен, ацетилен, пропилен, циклопропан, бутилены, диацетилен и другие насыщенные и ненасьпценные углеводороды. Катализаторами этого процесса являются пемза, окись алюминия, двуокись кремния, ВаО, СаО или сажа скорость реакции зависит также от кристаллического состояния карбида кальция [55]. [c.248]



Смотреть страницы где упоминается термин Окись азота взаимодействие с углеводородами: [c.311]    [c.230]    [c.230]   
Очистка технологических газов (1977) -- [ c.435 ]




ПОИСК







© 2025 chem21.info Реклама на сайте