Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Составление химических уравнений окислительно-восстановительных реакций

    Атомам в соединениях и комплексных ионах приписывают степень окислении, чтобы иметь возможность описывать перенос электронов при химических реакциях. Составление уравнения окислительно-восстановительной реакции основывается на требовании выполнения закона сохранения заряда (электронов). Высшая степень окисления атома, как правило, увеличивается с ростом порядкового номера элемента в пределах периода. Например, в третьем периоде наблюдаются такие степени окисления На + ( + 1), Мя" + ( + 2), А1 -" ( + 3), 81Си( + 4), РР5(5), 8Рв( + 6) и СЮЛ + 7). Степень окисления атома часто называется состоянием окисления атома (или элемента) в соединении. Реакции, в которых происходят изменения состояний окисления атомов, называются окислительно-восстановительными реакциями. В таких реакциях частицы, степень окисления которых возрастает, называются восстановителями, а частицы, степень окисления которых уменьшается, называются окислителями. В окислительно-восстановительной реакции происходит перенос электронов от восстановителя к окислителю. Частицы, подверженные самопроизвольному окислению — восстановлению, называются диспропорционирующими. В полном уравнении окислительно-восстановительной реакции суммарное число электронов, теряемых восстановителем, равно суммарному числу электронов, приобретаемых окислителем. Грамм-эквивалент окислителя или восстановителя равен отношению его молекулярной массы к изменению степени окисления в рассматриваемой реакции. Нормальность раствора окислителя или восстановителя определяется как число его эквивалентов в 1 л раствора. Следовательно, нормальность раствора окислителя или восстановителя зависит от того, в какой реакции участвует это вещество. [c.456]


    Для составления уравнения окислительно-восстановительной реакции надо знать химические формулы реагентов и продуктов реакции (они часто определяются на основании опыта). Сначала подбирают стехиометрические коэффициенты для соединений, атомы которых меняют степень окисления. При этом исходят из того, 410 число электронов, отданных восстановителем, должно быть равио числу электронов, полученных окислителем. [c.204]

    При составлении уравнений окислительно-восстановительных реакций (ОВР) важно уверенно находить окислитель и восстановитель. Для облегчения этой задачи в табл. 2 приведены некоторые типичные окислители и восстановители, часто встречающиеся в химических уравнениях, а также соответствующие процессы восстановления и окисления (запись этих процессов иногда называют электронными уравнениями). [c.92]

    Для составления полных уравнений окислительно-восстановительных реакций разработаны два стандартных метода. В методе учета изменений степеней окисления используется тот факт, что в химической реакции суммарное число единичных окислительных процессов должно быть равно суммарному числу единичных восстановительных процессов. В методе составления полуреакций окислительно-восстановительная реакция формально рассматривается как сумма двух полуреакций, в одной из которых электроны высвобождаются, а в другой они поглощаются. [c.424]

    Составление уравнений химических реакций, как правило, не представляет особых затруднений. Исключение составляет лишь третий этап, когда коэффициенты уравнения велики или в реакции участвует много реагентов. Эти затруднения чаще всего относятся к окислительно-восстановительным реакциям. Для них используются специальные способы уравнения — методы электронного баланса и электронно-ионных уравнений. [c.28]

    Мы сочли необходимым ввести в курс понятия об энтропии 5 и ее изменении А5 и об изменении энергии Гиббса АО, так как твердо уверены в том, что нельзя излагать химию в вузе, опираясь только на понятие о тепловых эффектах АН. С другой стороны, мы отдавали себе отчет в том, что на первом курсе информация о величинах АО и Д5 не может быть ни полной, ни строгой она в доступной форме должна передавать лишь главное, давая общую ориентировку. Приучить студентов с первого курса пользоваться энтальпийными и энтропийными характеристиками — это означает не только привить им навыки изучения с общих позиций самых различных процессов (химическое взаимодействие, растворение и т. д.), но и подготовить их к постоянному применению этих фундаментальных характеристик — вначале на материале неорганической, а затем аналитической и органической химии. В курсе физической химии эти представления получат дальнейшее развитие, уточнение, детализацию, будут поставлены на прочный математический фундамент. Поэтому, в частности, при рассмотрении окислительно-восстановительных реакций уделено внимание не только составлению уравнений, т. е. чисто формальной стороне, но и решению вопроса о направлении этих процессов, [c.5]


    Степень окисления-удобное понятие для подсчета переноса электронов между атомами им можно пользоваться даже в тех случаях, когда реакция в действительности не приводит к полному удалению электрона от одного атома и полному переносу его на другой атом. При составлении полных уравнений окислительно-восстановительных реакций должен соблюдаться закон сохранения зарядов в химической реакции электроны не создаются и не исчезают. Поясните, каким образом из этого закона следует 8-е правило, сформулированное в разд. 10-1, согласно которому в химических реакциях должна сохраняться сумма степеней окисления всех атомов. [c.457]

    Важность окислительного числа прежде всего заключается в том, что номер группы Периодической системы указывает на высш)то положительную степень окисления (характеристическая степень окисления), которую могут иметь элементы данной группы в своих соединениях. Исключение составляют металлы подгруппы меди, кислород, фтор, металлы семейства железа и некоторые другие элементы VHI группы. Кроме того, понятие степени окисления полезно при классификации химических соединений, а также при составлении уравнений окислительно-восстановительных реакций. Кривая изменения максимальной положительной степени окисления имеет периодический характер в зависимости от порядкового номера элемента (рис. 23). При этом в пределах каждого большого периода эта зависимость представляется сложной и своеобразной. [c.55]

    Для составления уравнения окислительно-восстановительной реакции необходимо прежде всего знать химические формулы исходных и получающихся веществ. Исходные вещества мы знаем, а продукты реакции устанавливаются либо экспериментально, либо на основании известных свойств элементов. В левой и правой частях уравнения реакции должно быть одинаковое число одних и тех же атомов. Следовательно, правильно записанная реакция является выражением закона сохранения массы вещества. Согласно закону эквивалентов вещества всегда соединяются между собой или замешают друг друга в определенных весовых соотношениях, соответствующих их эквивалентам. [c.115]

    Составление уравнений реакций. При записи окислительно-восстановительных реакций обычно показывают, сколько электронов отдано окислителем и сколько приобретено восстановителем. Условно принято окисление отождествлять с отдачей электронов, а восстановление — с приобретением электронов, т. е. не принимается во внимание строение частиц, природа химической связи в них и механизм протекающего процесса. Ради [c.203]

    Вместе с тем понятие степень окисления очень полезно для классификации веществ и при составлении химических уравнений. Так, степени окисления фосфора в соединениях НР О , НзР 0 и Н Ра От одинаковы, значит эти соединения сходны по строению и должны сильно отличаться по свойствам от соединения НзР Оз, в котором степень окисления фосфора другая. Особенно широко используется понятие степень окисления при подборе стехиометрических коэффициентов в уравнениях окислительно-восстановительных реакций. [c.49]

    В предыдущих главах было показано, что энергии ионизации, сродство к электрону и электроотрицательности атомов всех элементов удается объяснить на основе рассмотрения орбитальной электронной структуры атомов. Теперь попытаемся связать электронное строение атомов с химическими свойствами элементов и их соединений. Начнем с обсуждения (и составления уравнений) реакций, в которых одни реагенты теряют, а другие приобретают электроны (окислительно-восстановительные реакции). За- [c.415]

    Домашняя подготовка. Современное учение о строении атома. Заряд ядра и порядковый номер элемента. Отличие строения атомов различных элементов от строения атомов инертных элементов. Валентные электроны. Форма химической связи. Электроположительная и электроотрицательная валентность. Понятие об ионизационном потенциале и сродстве к электрону. Окислители и восстановители в периодической системе Д. И. Менделеева. Перемена валентности элемента как окислительно-восстановительный процесс. Приемы составления уравнений окислительно-восстановительных реакций электронная схема, молекулярное и ионное уравнения. Тримеры окислительно-восстановительных реакций. [c.159]

    СОСТАВЛЕНИЕ ХИМИЧЕСКИХ УРАВНЕНИЙ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИИ [c.53]

    Этим положением руководствуются при составлении химических уравнений окислительно-восстановительных реакций. [c.55]

    Для составления уравнений окислительно-восстановительных реакций (см. ч. И) необходимо знать их сущность, стехиометрические законы, строение вещества, периодический закон Д. И. Менделеева, окислительно-восстановительные свойства простых и сложных веществ (восстановители и окислители), правила и методы их составления, стандартные электродные потенциалы, законы химической термодинамики. [c.27]


    По существу электрохимия имеет дело с химическими реакциями, в которых происходит перенос электронов, а также с электрическим током, используемым или получаемым в подобных реакциях. Грубо говоря, всю электрохимию можно подразделить на две большие области, по смыслу как бы противоположные друг другу, несмотря на то что каждая из них подчиняется одним и тем же общим законам. Первая из этих областей связана с электролизом — процессом, в ходе которого электрический ток, вызываемый внешним электрическим потенциалом, обусловливает химическое превращение. Вторая область связана с электрохимическими элементами (называемыми также гальваническими элементами)— устройствами, в которых химическое превращение используется- для получения электрического тока. Изучение электролиза и электрохимических элементов неотделимо от переноса электрических зарядов в химических системах, и этому вопросу мы уделим много внимания. Перед тем как приступить к изучению данной главы, рекомендуется освежить в памяти методы составления уравнений окислительно-восстановительных реакций и полуреакций (см. гл. 14), поскольку мы будем иметь дело именно с такими реакциями. Характер подобных процессов и их связь с фундаментальными свойствами реагентов постоянно рассматриваются в данной главе. [c.283]

    Направление окислительно-восстановительных реакций. В рассмотренном методе составления уравнений реакций априори предполагалось, что та или иная окислительно-восстановительная реакция возможна. Однако имеется способ предсказания вероятности протекания той или иной окислительно-восстановительной реакции. Для этого необходимо рассчитать изменение энергии Гиббса реакции. В соответствии с законами химической термодинамики (см. гл. IV) окислительно-восстановительная реакция при изобарно-изотермических условиях, как и любая реакция, возможна если энергия Гиббса ее ниже нуля АС< 0. Энергию Гиббса реакции можно рассчитать, зная энергии Гиббса реакций образования продуктов и исходных веществ, которые для стандартных условий приводятся в справочниках. Рассмотрим для примера направление реакций взаимодействия магния и палладия с водой. Энергия Гиббса реакции [c.182]

    Перераспределение электронной плотности (перестройка электронных орбиталей и изменение электронного состояния участвующих веществ) приводит к образованию новых веществ с присущим им строением и химическими свойствами. Для составления уравнений окислительно-восстановительных реакций не имеет большого значения, какая связь при этих реакциях образуется — ионная или ковалентная. Поэтому для простоты говорят о присоединении или отдаче электронов независимо от типа связи. Для упрощения записи указывают степень окисления только тех атомов, у которых она меняется. [c.89]

    Составление уравнений окислительно-восстановительных реакций. Все химические реакции протекают в соответствии с законом сохранения массы и энергии. В ходе окислительно-восстановительных реакций сумма электрических зарядов исходных веществ должна быть равна сумме зарядов веществ, образующихся в результате реакции, хотя и изменяются степени окисления отдельных элементов, которые входят в состав реагирующих веществ. Полные уравнения окислительно-восстановительных реакций можно составить, используя метод электронного баланса или метод полуреакций. [c.146]

    Составление уравнений окислительно-восстановительных реакций. В живой природе и в технике особенно важное значение имеют реакции образования и разрушения химических связей элементов с кислородом. Так как соединения неметаллов с кислородом, как правило, являются ангидридами кислот, Лавуазье предложил все соединения элементов с кислородом называть окислами, а реакции из синтеза — окислением, обратные же реакции получения элементов из их окислов — восстановлением. [c.85]

    Сборник составлен в соответствии с программой по неорганической химии для химических факультетов университетов. Вопросы, упражнения и задачи сборника требуют широкого привлечения представлений структурной химии, химической термодинамики и отчасти кинетики. По нашему мнению, это должно активизировать работу студентов и способствовать развитию у них творческой инициативы, становлению их логического мышления. С той же целью в сборнике основной упор сделан на вопросы, требующ,ие анализа известных фактов, нх обоснования и объяснения, а в упражнениях по составлению уравнений окислительно-восстановительных реакций предусмотрены случаи, когда требуется написание уравнений реакций с наиболее вероятными продуктами, однозначно не прогнозируемыми из данных об окислительно-восстановительных потенциалах. [c.3]

    Основным принципом при составлении уравнений окислительно-восстановительных реакций, как любой химической реакции, является равенство числа одних и тех же атомов до и после реакции, а также равенство суммы зарядов исходных и конечных веществ. Особенности составления уравнений рассматриваемых реакций заключаются в следующем  [c.138]

    Задача данного пособия — закрепить основные теоретические положения неорганической химии и научить студе( тов использовать химические уравнения для осмысленного восприятия важнейших химических процессов. В пособии рассматриваются обменные и окислительно-восстановительные реакции. Окислительно-восстановительные реакции имеют большое теоретическое и практическое значение. Студенты обычно затрудняются при составлении уравнений этих реакций. Поэтому этот раздел излагается более подробно. [c.3]

    Для составления уравнения окислительно-восстановительной реакции прежде всего необходимо знать химические формулы вводимых в нее веществ и получающихся продуктов. Первые мы, естественно, знаем, вторые должны быть установлены либо специальным химическим исследованием, либо на основании известных свойств элементов. Так как, однако, окислительно-восстановительные процессы протекают обычно в водных растворах, непосредственно определить, участвует ли вода в реакции, часто бывает невозможно и это выясняется лишь при составлении уравнения. [c.284]

    Степень окисления может представлять собой и дробное число. Например, степень окисления железа в магнитном железняке Рез04 равна +V3. Дробные степени окисления не имеют смысла при объяснении связи в химических соединениях, но они могут быть использованы для составления уравнений окислительно-восстановительных реакций (см. 7.9, задача 2). [c.83]

    Для составления уравнения окислительно-восстановительной реакции нeoбxoди ю знать состав (химические формулы) исходных веществ и конечных продуктов. На основании химических формул следует установить, какие элементы изменили валентность, т. е. какое вещество в данной реакции служит окислителем, какое восстановителем. [c.90]

    Несмотря на указанные выше недостатки, использование понятия степени окисления удобно при классификации химических соединений и составлении уравнений окислительно-восстановительных реакций. Важность понятия степень окисления заключается, в частности, и в том, что номер группы периодической системы элементов равен высшей положительной степени окисления, которую могут проявлять элементы данной группы в соединениях (исключение составляют металлы семейства железа и некоторые другие элементы УН1Б-группы, металлы 1Б-груп пы, а также кислород, фтор, бром). [c.132]


Смотреть страницы где упоминается термин Составление химических уравнений окислительно-восстановительных реакций: [c.218]    [c.218]    [c.5]    [c.2]   
Смотреть главы в:

Сборник задач по общей химии 1965 -> Составление химических уравнений окислительно-восстановительных реакций




ПОИСК





Смотрите так же термины и статьи:

Окислительно-восстановительные реакци

Окислительно-восстановительные реакции

Окислительно-восстановительный уравнение

Реакции химические окислительно-восстановительные

Уравнения реакций

Уравнения составление

Уравнения химические



© 2025 chem21.info Реклама на сайте