Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Задачи синтеза химико-технологической системы

    Для эффективного решения задач, возникающих на всех уровнях иерархии химического производства, необходимо прежде всего выполнить идентификацию операторов отдельных ФХС, составляющих ХТС, т. е. оценить входящие в них параметры. Это может быть достигнуто либо решением обратных задач с постановкой соответствующих экспериментов (если объектом исследования служит действующее производство), либо априорным заданием ориентировочных значений технологических параметров, используя данные аналогичных производств (при проектировании новых химико-технологических систем). После процедуры идентификации отображение (2) можно считать готовым для изучения свойств ФХС в рабочем диапазоне изменения ее параметров нахождения оптимальных конструктивных и режимных параметров технологического процесса синтеза оптимального управления системой анализа и моделирования поведения ХТС, в состав которой в качестве элемента входит рассматриваемая ФХС и т. п. Реализация перечисленных задач так или иначе связана с решением системы уравнений, соответствующих отображению (2), что равносильно получению явной функциональной связи между переменными у и и либо в аналитической форме конечных соотношений, либо в виде результата численного решения задачи на ЭВМ. Формально это решение представляется в виде соответствующего отображения [c.8]


    Процесс синтеза химико-технологической системы в общем случае связан с решением трех основных задач  [c.34]

    Задачи и методы синтеза химико-технологической системы [c.292]

    В задачи курса входит общее знакомство с химическим производством, его структурой и компонентами, изучение основ химических процессов и химических реакторов, освоение общих методов анализа и синтеза химического производства как химико-технологической системы, знакомство с некоторыми конкретными химическими производствами, на примере которых предметно демонстрируются теоретические положения курса. Значительное место уделяется физико-химическим и технологическим аспектам анализа процессов в химическом производстве, в основном в химических реакторах, и организации химико-технологических процессов. [c.3]

    Задачи синтеза химико-технологической системы [c.235]

    В предлагаемой книге авторы попытались систематизировать вопросы создания систем как качественно нового подхода к использованию вычислительной техники. Книга посвящена комплексному рассмотрению проблемы построения таких систем для анализа и синтеза химико-технологических процессов, изложению методологического подхода — от формулирования проблемы, разработки математического описания отдельных процессов до выбора средств вычислительной техники и языков программирования. Рассмотрены вопросы создания пакетов прикладных программ, техническое и системное математическое обеспечение Единой Системы электронных вычислительных машин (ЕС ЭВМ). Приведено математическое описание и структура систем для решения задач анализа физико-химических свойств веществ и расчета типовых процессов химической технологии. [c.5]

    Из известных методов синтеза наиболее приемлемым для решения поставленной задачи является интегрально-гипотетический метод синтеза [246], основанный на последовательной разработке, анализе и оптимизации некоторого множества альтернативных вариантов технологической топологии и аппаратурного оформления синтезируемой системы. Интегрально-гипотетический принцип синтеза химико-технологической системы включает создание гипотетической обобщенной структуры системы, ее анализ и оптимизацию. [c.243]

    При таком подходе задача синтеза оптимальной ХТС сводится к задаче нелинейного программирования, т.е. к отысканию такого набора oi J (отражающих топологию системы), а также параметров аппаратов (матрицы ЕЩ и технологических потоков (матрицы 5М), которые соответствовали бы оптимальному значению критерия эффективности. Задавая предварительно параметры оптимизации а,], ЕМ и 8М, можно учесть опыт и интуицию пользователя. Более того, пользователь может это сделать задавая, например, начальную конфигурацию ХТС с помощью матрицы а также может корректировать процесс синтеза на любом из его этапов. Важно отметить, что использование мини-моделей при синтезе и оптимизации ХТС позволяет рассматривать их как постоянно действующие ограничения, поскольку одной из составляющих частей мини-моделей является условие осуществимости, при нарушении которого процесс является нереализуемым. Таким образом, наличие мини-моделей позволяет еще до полного расчета химико-технологической системы оценить принципиальную возможность реализации процесса при заданной топологии и параметрах ХТС, что существенно упрощает решение задачи синтеза. [c.603]


    Пример 4. Пусть имеется некоторая химико-технологическая система (ХТС). Описывая ее на определенном уровне подробности, диктуемом как необходимостью, так и современным состоянием знаний о системе, получим в качестве математической модели состояния системы в данный момент времени набор параметров, которые называются информационными переменными. Сопоставим, далее каждому аппарату системы ХТС точку на плоскости и каждую информационную переменную отнесем к некоторой такой точке. Обмен между информационными переменными, т. е. математическая модель функционирования системы, описывается набором отрезков, соединяющих точки указанного множества. Эти отрезки определяют информационные потоки, каждый из них соответствует одному из выбранных параметров физического потока между двумя соответствующими аппаратами. Таким образом, мы получим информационно-потоковый мультиграф, который используется для решения задач анализа и синтеза ХТС. [c.25]

    Инженер химик-технолог, подготовленный на базе бакалавриата, может проектировать производства и управлять ими. При этом он должен уметь выбирать, как уже было отмечено, экономически целесообразную и экологически безопасную технологию. И наконец, магистр занимается разработкой теоретических основ и технологических принципов технологий основного органического и нефтехимического синтеза. Эти же задачи решаются при выполнении кандидатских и докторских диссертаций. При этом инженер и магистр должны использовать основы специальных технологий, владеть методиками экономических расчетов, уметь выбирать наиболее подходящее оборудование и надежную систему контроля и регулирования параметров производства. Для этого они должны знать на необходимом уровне основы конструирования аппаратов и функционирования контрольно-измерительных приборов с целью создания системы автоматизации производства. Все эти задачи в настоящее время решаются с помощью электронно-вычислительной техники и компьютеров. Следовательно, специалисты всех уровней должны уметь пользоваться такой техникой и программным обеспечением. Более того, инженер должен владеть системами автоматизированного проектирования и управления производством. [c.11]

    Задачи синтеза и анализа каждого возможного альтернативного варианта проектируемой химико-технологической системы решают по следующим этапам 1) выбор определенного типа элементов ХТС в соответствии с заданной целью функционирования системы 2) разработка технологической топологии ХТС, которая удовлетворяет требованиям критерия оптимизации функционирования системы  [c.36]

    Общая характеристика. Системотехника применительно к химической промышленности (проектирование химико-технологических систем) представляет собой раздел технической кибернетики, занимающийся анализом свойств отдельных элементов технологического процесса, связями и зависимостями между ними, а также синтезом из этих элементов единой системы, обеспечивающей в определенных условиях достижение наилучших технологических и экономических результатов. Понятие большая система пока еще не имеет однозначного определения, однако оно оказалось полезным при постановке и решении очень важных практических задач и некоторых теоретических вопросов. Можно указать следующие характерные свойства, которые, как правило, выступают в сложных системах [57]  [c.473]

    Формализация и автоматизация процедуры построения математической модели ФХС. Из сказанного ясно, что эффективность процесса моделирования и последующего использования математической модели для решения задач оптимизации, построения модулей, анализа и синтеза химико-технологических систем в значительной мере обусловлена тем, насколько удачно учтены все перечисленные выше аспекты математического моделирования. Это в свою очередь во многом зависит от опыта, интуиции и степени квалификации исследователя, т. е. от того, что составляет субъективный фактор процесса моделирования. Удельный вес субъективного фактора при построении модели можно существенно уменьшить созданием специальной системы формализации и автоматизации процедур синтеза математических моделей. При этом вычислительная техника может и должна активно использоваться не только для решения уже готовых систем уравнений, но и на стадии формирования математического описания объекта. Такой [c.203]

    Гипотетическая обобщенная структура синтезируемой хими ко-технологической системы образуется путем функционального объединения всех возможных альтернативных вариантов технологической топологии и аппаратурного оформления данной системы. Каждая технологическая связь или структурная взаимосвязь синтезируемой ХТС отображается в виде коэффициентов структурного разделения а,/, которые показывают долю любого /-го выходного потока в -ном входном [247]. При таком подходе задача синтеза оптимальной ХТС сводится к задаче нелинейного программирования, т. е. к отысканию такого набора а,/ (отражающих топологию системы), а также параметров элементов и технологических потоков, которые соответствовали бы оптимальному значению критерия эффективности функционирования химико-технологической системы. [c.243]


    Современный подход к решению задач химической технологии основан на принципах системного анализа и синтеза. Это означает, что химико-технологический процесс рассматривается как сложная система, состоящая из элементов различных уровней детализации, начиная от молекулярного и кончая отдельными процессами. Элементы системы, характеризующие процессы химического превращения, диффузионного, конвективного и турбулентного переноса вещества, т. е. явления на молекулярном уровне, а также явления коалесценции и диспергирования, распределения материальных и энергетических потоков и т. д., иерархически взаимосвязаны между собой в соответствии с физической реализацией процесса. Можно выделить четыре основных этапа системного исследования процесса. [c.3]

    Формализация процедур на основе топологического принципа описания ФХС. Выше была определена схема общей стратегии системного анализа на уровне отдельного химико-технологического процесса. Для повышения эффективности этой стратегии необходимо создание соответствующей автоматизированной системы оперативной подготовки математических описаний процессов, в задачи которой входила бы максимальная формализация и автоматизация всех промежуточных процедур построения функциональных операторов ФХС. Иными словами, возникает необходимость в создании специального методологического подхода, который позволил бы путем широкого использования средств вычислительной техники упростить процедуру построения математических моделей сложных процессов, обеспечил бы правильную координацию отдельных функциональных блоков между собой при их агрегировании в общую математическую модель ФХС и допускал бы эффективную формализацию основных процедур синтеза математических описаний ФХС. [c.17]

    Экспертные системы (в настоящее время используется терминология гибридные экспертные системы или интегрированные экспертные системы) включают в себя знания в области химической технологии и теории автоматизированного синтеза ресурсосберегающих химико-технологических систем и помогают химикам-технологам в режиме интеллектуального диалога на ограниченном естественном языке решать неформализованные задачи. Знания в экспертной системе должны быть представлены в виде набора фреймов-прототипов и детерминированных продукционных правил, отображающих используемые эвристические правила. [c.26]

    Данная формулировка уже предполагает наличие некоторой информации об основах химико-технологического процесса, полученной на ранней стадии его проработки, и который необходимо реализовать в некой ХТС. Конечно, данные предварительной проработки процесса можно корректировать, что может привести даже к созданию ХТС на другой основе. При построении системы можно проработать задачу использования альтернативного сырья или источника энергии, рассмотреть иные стадии процесса или принципиально другое аппаратурное оформление процесса. С другой стороны, результат синтеза ХТС есть основа для проектирования производства. И здесь возможно потребуется проработка других вариантов ХТС, удовлетворяющих требованиям, возникающим на стадии проектирования, выполнения рабочих проектов оборудования и других составляющих частей производства. Это может быть связано с наличием необходимого оборудования и его стоимостью, ограниченными или, наоборот, широкими возможностями заводов-изготовителей и транспортировки оборудования, условиями строительно-монтажных работ, условиями дальнейшей эксплуатации всей системы. [c.293]

    Синтез принципиальных технологических схем ректификации — одн из существенных задач в общей проблеме оптимального проектирования химико-технологических систем. В настоящее время соверщенно очевиден факт, что любая технологическая схема разделения не является суммой спроектированных отдельно технологических операций и процессов, а представляет собой нечто целое, которое может быть охарактеризовано вполне определенной структурой. Другими словами, предусматривается не индуктивный подход к схеме, состоящий в разработке отдельных операторов и протекающих в них процессов с последующим суммированием этих операторов, а дедуктивный, при котором место каждого оператора определяется общими соображениями относительно свойств схемы в целом. Поэтому синтез принципиальных технологических схем является вторым этапом в общем плане разработки химикотехнологической системы, следующим за разработкой химического процесса получения новых веществ. [c.234]

    Экспертные системы в решении задач синтеза и эксплуатации водных ресурсосберегающих химико-технологических систем [c.145]

    Один из возможных алгоритмов решения задачи синтеза оптимальной химико-технологической системы, применяемый для задач небольшой размерности, состоит в упорядочении процедуры поиска оптимального решения. В основе алгоритма лежат с. 1сдующпе представления. Из переменных задачи V/, Л /(/ = — д, т . только две являются независимыми, а две другие [c.192]

    Для лучшего понимания смысла форм лпруемой выше (с использованием аппарата теории массового обслуживания) задачи синтеза гибкой химико-технологической системы в условиях стохастической неоиределенности информации обратимся к формулам для вычисления финальной вероятности системы массового обслуживаиия 30]. [c.235]

    Другим возможным распределением тепловой нагрузки в теплообменной системе является передача равного количества тепла в каждом теплообменнике. При этом используется интегральногипотетический принцип синтеза химико-технологических систем и задача синтеза ТС формулизуется как задача о назначениях. Оптимальная структура ТС определяется путем выбора оптимального варианта из гипотетической обобщенной технологической схемы, включающей совокупность всех альтернативных вариантов теплообменных систем. [c.78]

    При решении крупномасштабных задач оптимизации химико-технологических процессов на учебных практических и лабораторных занятиях целесообразно выделить уровни иерархии системы, на ее основе провести декомпозицию задачи с идентификацией простешпих элементов задачи и формированием алгоритмов их решения, а затем в ходе синтеза глобального алгоритма и его компьютерной реализации получить численное решение позиции оптимума. Реализация такого подхода рассмотрена при поиске оптимального режима работы концентрационной ректификационной колонны при разделении бинарной смеси углеводородов. [c.186]

    Решение задачи разработки схемы химико-технологической системы с помошью простого перебора всех возможных вариантов и последовательной их оптимизации практически невозможно, поскольку их число становится огромным уже при сравнительно небольшом числе аппаратов. Такой прием тем более не может быть использован для производства, где работают десятки, а иногда и сотни аппаратов. В связи с этим необходимо опираться на другие методы синтеза ХТС с меньшими затратами. [c.61]

    Сущность эвристическо-декомпозиционного принципа синтеза ХТС состоит в том, что поиск оптимального решения ИЗС проводится упорядоченным перебором множества эвристических решений, которые получены при заданном числе попыток синтеза системы. При одной попытке получают некоторое эвристическое решение ИЗС на основе элементарной декомпозиции исходной задачи. Любая элементарная задача синтеза образуется в соответствии с выбранным эвристическим правилом (или эвристикой), входящим в определенный набор эвристик [4, 38, 39, 157]. Каждая эвристика — либо некоторое утверждение, являющееся результатом обобщения существующих научных знаний в области химии, физики, теоретических основ химической технологии и кибернетики химико-технологических процессов, либо некоторое интуитивное или эмпирическое предположение исследователя, которое хможет привести к рациональному решению задачи синтеза. [c.129]

    Автоматизированная система анализа и синтеза ХТС (АСАС ХТС SYNSYS), разработанная на кафедре кибернетики химико-технологических процессов МХТИ им. Д. И. Менделеева, предназначена для решения широкого круга задач, связанных с цифровым моделированием, анализом, оптимизацией и синтезом оптимальных химико-технологических систем [1, 2]. Она содержит три основных уровня уровень автоматизированного моделирования уровень синтеза ХТС уровень анализа ХТС (рис. 11.1). [c.588]

    Научные интересы теория автоматизированного синтеза высоконадежных ресурсосберегающих химико-технологических систем (ХТС), топологические модели (фафы) сложных ХТС искусственный интеллект и гибридные экспертные системы в химической технологии компьютерные модели представления знаний для поиска рациональных решений математически неформализованных задач химической технологии обеспечение и оптимизация показателей надежности сложных ХТС. [c.14]

    В больших системах управления химико-технологическими комплексами часть вычислительного времени в УВМ отводится для решения задач автоматизированной оптимизации. Как видно нз вышеизложенного, обычно имеется несколько задач автоматической оп тимизации и, тем самым, несколько алгоритмов оптимизации. Между этими алгоритмами нужно распределить имеющийся запас вычислительного времени, для чего применяется алгоритм координирования. В дальнейшем рассмотрим синтез такого алгоритма. [c.373]


Смотреть страницы где упоминается термин Задачи синтеза химико-технологической системы: [c.203]    [c.6]    [c.32]    [c.21]    [c.176]    [c.19]    [c.8]    [c.59]    [c.112]   
Смотреть главы в:

Общая химическая технология и основы промышленной экологии -> Задачи синтеза химико-технологической системы




ПОИСК





Смотрите так же термины и статьи:

Синтез ХТС задачи

Синтез системы

Системы Системы химико-технологические

Системы технологические

Химико-технологическая система

Химико-технологические системы синтез



© 2025 chem21.info Реклама на сайте