Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен системе газ-жидкость

    Регенерацию теплоты можно проводить непрерывным способом, когда в качестве теплового агента применяется, например, твердый материал небольшого зернения, жидкость или даже газ, движущиеся в системе и поглощающие периодически теплоту горячего носителя, а затем отдающие ее материалу, который нужно нагреть. Такая установка, использующая твердые гранулы (или мелкие камни, гальку), показана на рис. 1Х-39. Она может применяться для нагревания воздуха, водорода, метана, водяных паров или других газообразных веществ в различных промышленных процессах. Гранулы диаметром 8—15 мм нагреваются в верхней камере 2 при непосредственном соприкосновении (прямой теплообмен) с отдающим теплоту носителем, которым может быть любой газ с высокой температурой (например, продукты сгорания). После перемещения в нижнюю камеру 3 гранулы отдают теплоту газам, которые нужно нагреть. Подъемником 1 гранулы транспортируются снова на верх камеры 2. В среднем цикл перемещения гранул составляет 30—50 мин. Нижняя камера может также использоваться как реактор для проведения высокотемпературных реакций в газовой фазе (например, для каталитического крекинга нефтепродуктов) тепловой агент, в этом случае одновременно является катализатором. [c.387]


    Довольно часто значительный интерес в приложениях может представлять взаимодействие между двумя течениями по обеим сторонам тонкой стенки. Такого рода сопряженный теплообмен в системе жидкость — жидкость рассматривался в работах [86, 87] для случая естественной конвекции на одной стороне стенки и вынужденной конвекции — на другой. Оба течения связывались между собой посредством условий непрерывности температур и тепловых потоков на стенке, что приводило к существенному усложнению получаемых численных рещений. Описываемый случай представляет собой взаимодействие двух процессов конвекции с различными пространственными распределениями коэффициентов теплоотдачи конвекцией на обеих поверхностях тонкой стенки. При переносе тепла конвекцией и теплопроводностью граничное условие для температуры на поверхности раздела также является результатом взаимодействия на поверхности раздела распределенных процессов в обеих областях. Это обстоятельство существенно усложняет анализ вследствие эллиптического характера механизмов переноса энергии теплопроводностью. Был проведен ряд исследований такого взаимодействия между вынужденной конвекцией в каналах и теплопроводностью стенок (см. обзорную работу [80]). Аналогич- [c.478]

    В газовой фазе проводятся высокотемпературные контактно-каталитические процессы, для которых используются контактные аппараты различной конструкции. Для газовых реакций, идущих со значительным теплообменом, применяют аппараты змеевикового типа, например трубчатые печи. Для систем газ+жидкость применяют колонные и башенные аппараты с различными насадками (внутренние устройства) и без них для системы жидкость-[-жидкость — аппараты емкостного типа с мешалками или без них для системы газ+твердое вещество — гребковые аппараты полочного типа, вращающиеся барабаны, шнеки и другие аппараты с механическим перемешиванием. В последнее время получили широкое распространение аппараты с кипящим слоем материала, через который снизу вверх движется газ, а твердые частицы находятся во взвешенном состоянии. Для систем жидкость- -твердое вещество применяют проточные камеры, заполненные зернистым продуктом и емкостные аппараты с мешалками. Для систем твердое вещество+твердое вещество должно быть предусмотрено устройство, хорошо перемешивающее материалы. [c.17]


    Для некоторых химических процессов, идущих в системе жидкость — газ с большим теплообменом, успешно применяют [c.252]

    К теплообменным устройствам и аппаратам относят всевозможные генераторы теплоты (котлы), собственно нагреватели одной среды за счет другой (теплообменники), охладители продуктов с применением хладагентов (холодильники), испарители жидкостей из смеси, конденсаторы паров с получением конденсата и некоторые другие теплообменные системы, имеющие специфическое энергетическое назначение (экономайзеры, калориферы, воздухонагреватели и т. д.). [c.148]

    Теплообменные аппараты труба в трубе используют главным образом для охлаждения или нагревания в системе жидкость—жидкость, когда расходы теплоносителей невелики и последние не меняют своего агрегатного состояния. Иногда такие теплообменники применяют при высоком давлении для жидких и газообразных сред, например, в качестве конденсаторов в производстве метанола, аммиака и др. [c.60]

    Скорость циркулирующей жидкости может достигать 1—2 м/с. Это позволяет обрабатывать в газлифтном реакторе неоднородные жидкие системы с большим различием плотностей сплошной и дисперсной фаз. Интенсивная циркуляция способствует лучшему теплообмену между жидкостью и теплообменными поверхностями, образованными стенками барботажных труб. Возможность размещения в газлифтных аппаратах больших поверхностей теплообмена без нарушения принципа циркуляции делает их наиболее эффективными устройствами для проведения реакций с большим тепловым эффектом. [c.9]

    Контактные теплообменники нередко используются также в системах жидкость—газ, пар барботаж газа (пара) через слой жидкости теплообмен в скрубберах на насадке, орошаемой сверху жидкостью при подаче газа снизу впрыск диспергированной жидкости в газовую среду (кстати, в среду другой жидкости — тоже, тогда это системы жидкость—жидкость). [c.526]

    В случае проведения процессов с большим тепловыделением (Q > > 300 ккал/кг) встроенные в реактор теплообменные поверхности располагать в нисходящем потоке, так как именно здесь наблюдается наибольшая теплоотдача в системе жидкость—газ—твердое тело (катализатор). [c.246]

    Почти во всех отраслях техники применяют сооружения и аппараты, основной технологический процесс в которых связан с перемещением жидкости или газа. Примерами такого оборудования могут служить теплообменные установки и аппараты (градирни, скрубберы, калориферы, радиаторы, экономайзеры и рекуператоры), газоочистные аппараты (электрофильтры, тканевые, волокнистые, сетчатые, слоевые и другие фильтры, батарейные и групповые циклоны), котлы, различные химические аппараты (абсорберы, адсорберы, каталитические реакторы, ректификаторы, выпарные аппараты и др.), промышленные печи (доменные, термические и др.), сушильные установки различных типов, атомные реакторы, вентиляционные и аспирационные устройства, системы форсунок. [c.3]

    При давлениях выше критического охлаждающая жидкость не кипит, поскольку она находится лишь в однофазном состоянии, и расчет производят как для конвективного теплообмена. С увеличением давления температура кипения углеводородов повышается, и при критическом давлении она достигает максимального значения. При критической температуре поверхностное натяжение жидкости становится равным нулю, в связи с чем граница между жидкостью и насыщенным паром над ней исчезает. Однако нагрев охлаждаемой жидкости до критической температуры весьма опасен, так как в околокритической области температур коэффициент теплоотдачи к жидкости резко уменьшается. Наибольший эффект охлаждения достигается в условиях возможно большего недогрева жидкости до температуры ее, кипения на выходе из теплообменной системы. Обозначим теплообменную способность охлаждающей жидкости при турбулентном течении в условиях остывания горячей стенки через коэффициент А. Для воды этот коэффициент будет равен единице, для метилового спирта 0,545, этилового спирта 0,482, жидкого кислорода 0,479, а для четыреххлористого углерода лишь 0,141 [48]. Для углеводородов этот коэффициент ненамного выше коэффициента для четыреххлористого углерода. [c.86]

    Конвективный теплообмен между газом или жидкостью и твердым телом происходит в результате их соприкосновения. Теплопередача при этом происходит переносом теплоты движущимися материальными частицами газа или жидкости, прилегающей к поверхности твердого тела при эндотермических реакциях, и от частиц материала к газу или жидкости при экзотермических реакциях, за исключением печи синтеза хлористого водорода, где тепло от реакционных газов передается металлическому кожуху печи и отводится из системы. [c.26]


    Не меньшее практическое значение имеет дальнейшее изучение таких не новых, но мало исследованных проблем, как, например, теплообмен при кипении жидкости. Несмотря на наличие большого экспериментального материала, еще не вполне ясен механизм кипения жидкости и по существу отсутствует количественная теория теплообмена при кипении. Можно было бы без труда назвать ряд других актуальных вопросов теплообмена, однако мы укажем еще лишь одну важную Е практическом отношении задачу — исследование теплообмена с трубах некруглого сечения, широко используемых в различных теплообменных системах. [c.3]

    Построены решения ряда задач нестационарного теплообмена. Анализ решения для температурного поля в потоке жидкости и локального числа Нуссельта во втором и третьем приближениях показал, что они хорошо совпадают с точными решениями. Получены простые по форме и достаточно точные решения с учетом теплоты трения и внутреннего тепловыделения. Материал этой главы дополнен исследованиями задач при обобщенных граничных условиях третьего рода. Решение подобных задач позволит по определенной упрощенной математической модели исследовать сложный сопряженный теплообмен в системе жидкость в трубе — стенка — внешняя среда. Аналитический метод решения внутренних задач конвективного теплообмена позволяет исследовать поле температуры в турбулентном потоке жидкости. Изложен способ решения задач при течении жидкостей в трубах с различными профилями живого поперечного сечения. В этой же главе рассмотрены задачи теплообмена для неньютоновских жидкостей со степенным реологическим законом. [c.7]

    Теплообменные аппараты труба в трубе используют главным образом для охлаждения или нагревания в системе жидкость-жидкость, когда расходы теплоносителей невелики и последние не меняют своего агрегатного состояния. Иногда такие теплообменники применяют при высоком давлении для жидких и газообразных сред, например, в качестве конденсаторов в производстве метанола, аммиака и др. Также их используют для загрязненных коксообразующими веществами и механическими примесями теплоносителей, в которых обеспечивается хороший теплообмен за счет больших скоростей и турбулентности потоков в трубном и межтрубном пространствах. Высокие скорости и турбулентность потока уменьшают возможность отложения на стенках труб кокса или других образований. [c.123]

    В разделе 13.2 была установлена общая форма функционально зависимости числа Нуссельта для систем с вынужденной конвекцией. Чтобы найти эту зависимость, был использован метод анализа размерностей системы дифференциальных уравнений сохранения, описывающих конвективный теплоперенос, и граничных условий к указанным уравнениям. Аналогичный подход может быть применен и к случаю теплопереноса в условиях естественной конвекции с той лишь разницей, что уравнение движения для систем с естественной конвекцией нужно записывать с учетом изменения плотности в зависимости от температуры. Изменения плотности приводят к возникновению подъемной силы (см. разделы 10.3, 10.6 и пример 10-4). Повторяя ход рассуждений (с соответствующими математическими выкладками), с помощью которого выше получено соотношение (13.28), можно показать, что при естественно-конвективном теплообмене между жидкостью (или газом) неограниченного объема и погруженным в него твердым телом справедлива зависимость [c.388]

    В системе его водоснабжения вода подавалась на предприятия без всякой подготовки. В отдельные периоды года, особенно весной, почти вся теплообменная аппаратура забивалась посторонними включениями и остатками биологических обрастаний, что приводило к продолжительным нарушениям технологического режима в системах ректификации и абсорбции и обильному выбросу газов и легковоспламеняющихся жидкостей в атмосферу. Неочищенная промышленная вода вызывала также коррозию теплообменников. [c.246]

    Наряду с традиционной системой внешнего охлаждения рабочих камер компрессоров и поршневых двигателей, в ряде случаев применяют испарительное охлаждение при непосредственном контакте рабочего тела с мелкодисперсной жидкостью. При этом повышается теплообмен, увеличивается количество отводимого тепла, уменьшается количество отложений, что оказывает существенное влияние на повышение экономичности и эксплуатационной надежности компрессорных машин и тепловых двигателей. Это подтверждается результатами опытно-промышленных исследований, выполненных различными организациями и авторами данной книги. [c.4]

    Рассмотрим теплообменные поверхности, для которых выполняются условия Лв>1 и Дв>1. Практической реализацией таких поверхностей является наружное обтекание пучка стержней с внутренним тепловыделением или системы жидкий металл — газ, конденсирующаяся (кипящая) жидкость — газ, жидкость высокого давления — газ низкого давления. В этом случае можно положить Лн= =Дн=0. Тогда (4.13) упрощается и принимает вид (при г=н) [c.67]

    В случаях, когда теплообмен происходит в результате естественной конвекции, обусловленной разностью плотностей жидкости в различных точках системы, процесс характеризуется значением критерия Архимеда [c.136]

    Кинетика газожидкостных реакций достаточно подробно освещена в вышедших в последнее время монографиях [4, 20]. Достаточно полно отражена в отдельных изданиях [30, 89] и актуальная проблема математического моделирования химических реакторов. Однако определяющие их факторы — гидродинамические явления при взаимодействии газа с жидкостью, конвективный теплообмен между газожидкостной смесью и стенками теплообменных элементов и массоперенос в гетерогенных системах — в обобщенном виде и с необходимыми теоретическими предпосылками до сих пор не освещались. Эти явления рассмотрены в книге применительно к реакторам различных принципов действия (барботажным, газлифтным, с механическим диспергированием газа, пленочным). Каждому типу реактора дана оценка с точки зрения его использования в тех или иных условиях, что позволит проектировщикам этой аппаратуры обоснованно подойти к выбору нужной конструкции. [c.3]

    Снижение интенсивности теплообмена с увеличением концентрации мелких частиц полиэтилена в жидкости наблюдалось также Яновским [971, который объясняет это тем, что легкие частицы с плотностью, близкой к плотности жидкости, образуют квазигомогенную систему с повышенной вязкостью. Но, вероятно, здесь главную роль играет не плотность твердой фазы, а особая структура неоднородной системы, приближающейся по свойствам к неньютоновской жидкости. Исследования, например, Бушкова [701 с частицами полистирола в воде показали увеличение коэффициента теплоотдачи от суспензии к стенке теплообменного элемента а у с увеличением как их диаметра (от 0,5 до 1,6 мм), так и концентрации. Если руководствоваться опытными данными [1101, то можно предложить следующую эмпирическую зависимость для расчета а у. [c.71]

    Влияние статического напора. В теплообменных матрицах, каналы которых ориентированы вертикально и теплоноситель движется либо вверх, либо вниз, статический напор столба жидкости оказывает влияние на степень устойчивости течения. При полном испарении теплоносителя и постоянном подводе тепла на единицу длины канала высота столба теплоносителя с относительно высокой плотностью и обусловливаемый им статический напор, действующий на входное сечение, прямо пропорциональны массовому расходу. Влияние этого фактора графически показано на рис. 5.22 для типичного случая системы низкого давления, в которой поток в вертикальных каналах направлен вверх. [c.112]

    Обзор экспериментальных данных по массо- и теплообмену при лимитирующем сопротивлении дисперсной фазы в системах жидкость — жидкость приведен в работе [256] и книге [257]. Результаты сопоставления экспериментальных данных по зависимости среднего по времени значения критерия Шервуда от критерия Фурье с расчетными величинами представлены на рис. 4.5. Кривая 1 соответствует расчету по уравнению Кронига, Бринка (4.53). Заштрихованная область - экспериментальные данные для капель при изменении критерия Рейнольдса в диапазоне 50<Ке<200. Для исследованных систем в приведенном диапазоне Ке форма капель близка к сферической. Эксперименты проводились как с единичными каплями, так и в распылительной колонне при задержке дисперсной фазы до 18 %. Кривая 2 представляет зависимость степени извлечения С от критерия Фурье. Как следует из приведенного сопоста-190 [c.190]

    На формирование кристаллов влияет и теплообмен образующейся системы жидкость — твердая фаза с окружающей средой. Так, наличие в расплаве конвекционных потоков будет приводить к естественному отводу теплоты, выделяющейся от образующихся зародышей и растущих кристаллов, или даже к их переносу в более холодные части расплава. Этому способствует и принудительное перемешивание расплава, которое с целью поддерживания его однородного состава в объеме в ходе процесса осуществляется различными способами. Перемешивание приводит также к обнорлению переходного слоя на границе кристалл—расплав, что обусловливает более благоприятное межфазовое распределение примеси. Кроме того, при этом снижается эффект возможной агломерации твердой фазы, вследствие которой несколько соприкасающихся кристалликов могут срастаться с образованием включений расплава. Наличие таких включений, разумеется, ухудшает качество конечного продукта. [c.110]

    Коэффициент теплоотдачи а, Вт/(м - °С) — это ко -эффициеит, характеризующий интенсивность конвективного теплообмена между поперхностью твердого тела и окружающей его жидкостью. Зная физические свойства жидкости, ее расход и конфигурацию теплообменной системы, можно рассчитать а по уравнению, приведенному в гл. 3. [c.140]

    Некоторые новые возхможности применения синтетических материалов появились при изготовлении плйючных теплообменников системы жидкость — жидкость. При обеспечении пленочного течения жидкости по обеим сторонам вертикальной теплообменной поверхности материал стенки будет испытывать только продольные растягивающие нагрузки от веса находящейся на стенке жидкости. Ввиду небольшой толщины слоя жидкости, стекающей по вертикальной поверхности под действием гравитационных сил, величина этих нагрузок бу Гет ничтожна. Например, при линейной плотности орошения 10 см /сек толщина стекающей пленки воды составит величин порядка 0,5 мм [1]. Тогда вес жидкости, находящейся на обеих сторонах теплообменной поверхности и приходящейся на 1 составит всего 1 кг. При длине теплообменника  [c.37]

    В ряде случаев при осуществлении тепло- и массообменных или химических процессов, как показала практика, целесообразен переход от гомогенных систем к гетероген-ньш. Изменение количества фаз достигается, в частности, введением в жидкость дополнительной газовой фазы. К примеру, известен и достаточно широко применяется в пищевой технологии прием интенсификации теплообменных процессов и аппаратов, заключающийся в повышении коэф-фрщнентов теплопередачи за счет принудительногааэрирования жидкого теплоносителя [121]. Эффективным оказался также ввод газовой фазы при проведении экстракционных процессов в системе жидкость — жидкость [1301. [c.11]

    Расчет интенсивности теплообмена при ламинарном движении пленки в роторном аппарате оказывается более громоздким и может быть проведен [29] в предположении о равномерной диссипации подводимой к ротору механической энергии в слое жидкости одинаковой толщины. Профиль температуры поперек ламинарной пленки находится из рещения задачи стационарной теплопроводности плоской стенки с равномерным внутренним тепловыделением— см. уравнение (2.39). Получаемое параболическое распределение температуры позволяет определить температуру на внещ-ней поверхности пленки. Теплообмен между ламинарной пленкой и валиком предполагается соответствующим пенетрационной теории массообмена в системах жидкость—жидкость [36]. Коэффициент теплоотдачи а оказывается зависящим от величины подводимой мощности, от величины теплового потока, а также от некоторых гидродинамических параметров, требующих предварительного определения. Методика расчета а при ламинарном режиме работы пленочных аппаратов оказывается громоздкой ее изложение приводится в работах [29, 37]. Предложенная модель проверена экспериментально и объясняет наличие экстремума а в зависимости от угловой скорости ротора. [c.136]

    Теплообмен между жидкостью и стенкой может быть установлен двумя путями теоретическим и опытным. При теоретическом решении выводятся дифференциальные ураинеиия, характеризующие режим движения и теплообмен рассматриваемого явления. Система уравнений и граничные условия определяют единственност 1 решения, однако доведение его до конца оказалось возможным для небольшого числа задач. [c.321]

    Изложены теоретические основы расчета колонных аппаратов. Рассмотрены стационарные и нестационарные режимы обтекания жидких, твердых и газообразных частиц потоком ньютоновской и неньютоновской жидкости, массо- и теплообмен в зтих системах с учетом химических реакций и поверхностных явлений на границе раздела фаз. Результаты теретических исследований сопоставлены с зкспериментальными данными и использованы для расчета конкретных промышленных аппаратов. [c.2]

    Обратный клапан разгружает компрессор от высокого давления нагнетания при автоматической остановке, а также защищает от прорыва аммиака в рабочее помещение при авариях. Расположенный ниже конденсатора линейный ресивер является сборником конденсата и выполняет две функции сохраняет теплообменную поверхность конденсатора незатопленной и создает запас рабочего тела для компенсации неравномерности расхода жидкости при колебаниях тепловой нагрузки. Автоматическое дроссельное устройство /V постоянно обеспечивает оптимальное заполнение испарителя жидкостью, обычно на уровне верхнего ряда труб. Тепло конденсации аммиака отводится охлаждающей водой, циркулирующей в оборотной системе. Подогретая в конденсаторе вода подается на орошение насадки вентиляторной градирни VII. Охлажденная вода отсасывается насосом VI и подается i трубное пространство конденсатора VIII. [c.174]

    Разработка новых пенных аппаратов идет по двум направлениям первое — совершенствование существующей конструкции пенного аппарата без принципиальных изменений, в частности, без ликвидации основного конструктивного элемента — решетки второе — разработка безрешеточных пенных аппаратов, работающих с само-орошением (без внешней циркуляции жидкости). Известно, что мокрые массо- и теплообменные, а также газоочистительные аппараты требуют большого расхода рабочей жидкости — до 1,5 л на 1 м обрабатываемого газа, регенерации этой жидкости в системах рециркуляции (осветление, нейтрализация) и удаления шлама. Проблема охраны природы ставит вопрос перевода технологических процессов на замкнутые безотходные циклы или хотя бы резкого снижения расхода воды в промышленных процессах и утилизации шламов. Поэтому при разработке новых мокрых контактных аппаратов весьма желательна ликвидация систем внешней циркуляции орошающей жидкости. [c.232]

    Система охлаждения двигателя термосифонпо-испарительного типа такая я<е, как и двигателя установки ИТ9-2, но вследствие более высокой температуры охлаждающей жидкости (190° вместо 100° на установке ИТ9-2) теплообменный конденсатор имеет большую высоту и в верхней части поставлен дополнительный змеевик для циркуляции водопроводной воды. [c.628]

    Зигель и Норрис [37] исследовали теплообмен посредством естественной конвекции в частично замкнутых пространствах между вертикальными параллельными пластинами, а Глоб и Дропкин [38] — в жидкостях, заключенных между двумя горизонтальными пластинами, подогреваемых снизу. Обзор проблем, связанных с естественной конвекцией в горизонтальных слоях теплоносителя, подогреваемого снизу, приводится Острахом [39]. На основании этих и аналогичных теоретических и экспериментальных работ становится ясно, что число Грасгофа является важным параметром, связывающим тепловой поток с размерами системы и свойствами теплоносителя. Этот параметр определяется следующим образом  [c.65]

    Один из путей создания исключительно компактного теплообменника типа жидкость — жидкость — реализация максимально развитой теплообменной поверхности на кубический метр объема теплообменника. Это подразумевает использование тесно рас- юложенных труб малого диаметра. На рис. 14.3 показано влияние диаметра труб на величину удельной мощности, достижимой при заданной разности температур. Преимущества труб малого диаметра и плотной набивки пучка проявляются с особой силой, если теплообменник предназначен для работы на жидких металлах П5 , поскольку благодаря их высокой теплопроводности коэффициенты теплоотдачи /юлучаются исключительно высокими, особенно в случае каналов с малым диаметром. В связи с этим возникает вопрос выбора оптимального диаметра труб. Опыт эксплуатации показывает, что для большинства обычных теплообменников нецелесообразно использовать трубы диаметром менее 12,7 мм из-за опасности заноса труб и их закупорки. Однако система с жидким щелочным металлом может поддерживаться столь чистой, что вопрос о возможных отложениях на стенках ие будет представлять какой-либо проблемы. [c.272]


Смотреть страницы где упоминается термин Теплообмен системе газ-жидкость: [c.170]    [c.245]    [c.236]    [c.357]    [c.558]    [c.147]    [c.32]    [c.79]    [c.273]    [c.130]   
Процессы и аппараты химической технологии Часть 1 (2002) -- [ c.309 , c.310 ]

Процессы и аппараты химической технологии Часть 1 (1995) -- [ c.309 , c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Системы газ жидкость

Системы жидкость жидкость



© 2024 chem21.info Реклама на сайте