Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотная и диффузная части ДЭС

    Ч о, Ч в, Рд — полный скачок потенциала, скачок потенциала в плотной, диффузной части ДЭС [c.7]

    О. А. Есиным и Б. Ф. Марковым (эффект Есина — Маркова), она и не обеспечивает количественной сходимости с опытом. При расчете емкости по формуле Штерна следует иметь в виду, что общая емкость С двойного слоя состоит из двух последовательно включенных емкостей — его плотной масти С и диффузной части С . [c.270]


    При сделанных Штерном допущениях емкость диффузной части двойного слоя должна быть значительно больше емкости его плотной части и, как это вытекает из уравнения (12.16), общая емкость определяется в основном гельмгольцевской частью двойного слоя. Определение емкости с использованием модели Штерна приводит поэтому к результатам, согласующимся с опытом как по величинам емкости, так и по характеру ее зависимости от потенциала электрода и концентрации раствора. [c.270]

    Теория электрохимического перенапряжения относилась первоначально к тому случаю, когда можно было пренебречь тонкой структурой двойного слоя и не учитывать распределения потенциала между его плотной и диффузной частями. Это допущение оправдывается (с наибольшей полнотой — в области малых перенапряжений), если выполнены следующие условия. [c.347]

    Поскольку внутри плотной части двойного слоя нет электрических зарядов, то изменение потенциала с увеличением расстояния от электрода здесь линейное (см. рис. XX, 5, область ). В то же время в диффузной части двойного слоя [c.537]

    С =Сг. Однако в достаточно разбавленных растворах (0,01 н. и меньше) при малых зарядах электрода (т. е. вблизи потенциала нулевого заряда) емкость диффузной части двойного слоя становится меньше емкости плотной [c.539]

    При относительном перемещении фаз, из-за гидратации твердой поверхности и ионов, граница скольжения проходит на некотором расстоянии от твердой поверхности. В результате этого двойной электрический слой подразделяется на плотную (адсорбционную) и диффузную части (рис. 100). [c.330]

    Таким образом, потенциал металла относительно раствора Va разбивается на две части — приходящуюся на плотную часть двойного слоя толщиной бо. и ij) —приходящуюся на диффузную часть двойного слоя толщиной Я, [c.159]

Рис. 171. Строение двойного электрического слоя (/) на границе металл— раствор и распределение потенциала в ионной обкладке при различной концентрации раствора (//) а6 — плотная часть 6в — диффузная часть, ф — разность потенциалов между раствором и металлом 1)), 1)1 — падение потенциала в плотной и диффузной частях двойного слоя х — расстояние от поверхности металла Рис. 171. <a href="/info/602564">Строение двойного электрического слоя</a> (/) на <a href="/info/358042">границе металл</a>— раствор и <a href="/info/308053">распределение потенциала</a> в <a href="/info/10600">ионной обкладке</a> при <a href="/info/873392">различной концентрации раствора</a> (//) а6 — <a href="/info/134022">плотная часть</a> 6в — <a href="/info/386330">диффузная часть</a>, ф — разность потенциалов <a href="/info/638224">между раствором</a> и металлом 1)), 1)1 — <a href="/info/10684">падение потенциала</a> в плотной и <a href="/info/8712">диффузной частях двойного слоя</a> х — расстояние от поверхности металла

    Толщина плотного слоя Гельмгольца принимается равной диаметру противоиона. Эту часть ДЭС можно рассматривать как плоский конденсатор, потенциал которого с увеличением расстояния от поверхности снижается линейно. По теории Гуи — Чепмена противоионы диффузной части ДЭС распределяются в поле поверхностного потенциала в соответствии с законом Больцмана. Теория показывает, что потенциал в диффузной части слоя снижается с расстоянием по экспоненте. При малом значении потенциала эта зависимость выражается уравнением [c.78]

    Что понимают под толщиной диффузной части двойного электрического слоя Чем определяется толщина плотной п диффузной частей двойного электрического слоя  [c.103]

    Современная теория строения двойного электрического слоя во многом исходит из представлений Штерна, допустившего, что в двойном слое следует различать плотную часть, толщина которой принимается равной среднему ионному радиусу электролита, и диффузную часть с постепенно [c.102]

    Распределение потенциала в ионной обкладке двойного электрического слоя представлено на рис. 171, II. Величина сКачка потенциала на границе раствор —металл складывается из падения потенциала ф в плотной части двойного слоя и падения потенциала ф1 в диффузной. Строение двойного электрического слоя определяется общей концентрацией с раствора. С ее увеличением процессы, способствующие формированию диффузной части, ослабляются, раз- [c.473]

    Характер изменения потенциала в двойном электрическом слое позволяет выделить в нем плотную и диффузную части. Плотная часть двойного электрического слоя (так называемый слой Гельмгольца) образована ионами, находящимися на минимальном расстоянии от поверхности раздела фаз. Такой слой подобен конденсатору с металлическими обкладками. Потенциал в нем меняется линейно. [c.228]

    Диффузная часть двойного электрического слоя (слой Гюи) соответствует конденсатору, одна из обкладок которого как бы размыта . Этой обкладке отвечают ионы, отошедшие в глубь раствора вследствие их теплового движения. С удалением от поверхности раздела фаз количество избыточных ионов быстро убывает, а раствор становится нейтральным. Межфазный скачок потенциала представляет собой сумму скачков в плотной части двойного слоя и 1 1 -потенциала, равного скачку потенциала в слое Гюи. Ввиду того что общая толщина двойного электрического слоя остается незначительной, изменение потенциала при переходе от одной фазы к другой всегда носит скачкообразный характер. [c.228]

    При относительном перемещении фаз ионы диффузной части двойного слоя участвуют в движении жидкой фазы, в, то время как ионы плотного слоя остаются вместе с твердой фазой. Поэтому участие ионов диффузного слоя в относительном движении жидкости характеризуется не всем межфазным потенциалом е, а лишь той частью его, которая представляет собой падение потенциала в области диффузного слоя. Эта часть падения потенциала, точнее разность потенциалов между границей скольжения жидкости и глубиной раствора, т. е. областью, где объемный заряд равен нулю, называется электрокинетическим или -потенциалом. [c.178]

    Слой, в котором происходит изменение концентрации, вызванное замедленностью массопереноса при протекании тока, называется диффузионным слоем. Под термином концентрация у поверхности электрода понимается концентрация на границе диффузионного и диффузного слоев, т. е. при х=ХгЛ-Х (рис. 81). На этой границе еще соблюдается условие электронейтральности раствора, тогда как на более близких расстояниях от поверхности это условие нарушается. Однако следует иметь в виду, что толщина диффузионного слоя б обычно значительно больше толщины диффузной части двойного слоя (б ), а также толщины плотного слоя (б Ха). Поэтому если экстраполировать с, д -кривую от точки Х=Х2+Х до точки х=0, то получаемое при этом значение с очень мало отличается от концентрации вещества при x=Xi+%. В связи с этим в дальнейшем при выводе различных математических соотношений будем условно считать, что концентрация у поверхности электрода — это концентрация при х=0. [c.150]

    Образующийся в результате такого взаимодействия двойной слой можно подразделить на плотную часть (слой Гельмгольца), образуемую ионами, прилегающими непосредственно к поверхности металла, и диффузную часть (диффузный слой). [c.343]

    Общая толщина двойного слоя бо = б + X, где б — толщина плотной части двойного слоя, а — толщина диффузной части. [c.344]

Рис. 79. Изменение потенциала в плотной и диффузной частях двойного слоя. Линия АА — граница между плотным и диффузным слоем. Рис. 79. <a href="/info/73942">Изменение потенциала</a> в плотной и <a href="/info/8712">диффузной частях двойного слоя</a>. Линия АА — <a href="/info/1578989">граница между</a> плотным и диффузным слоем.

    Впервые количественные расчеты зависимости плотности заряда от концентрации электролита в растворе и потенциала электрода, учитывающие диффузный характер двойного слоя, были выполнены Ж. Гун. Поэтому диффузную часть двойного слоя принято называть слоем Гуи. В своих расчетах Ж. Гуи рассматривал ионы как точечные заряды. Позднее было показано, что такое представление совершенно неприменимо для плотной части двойного слоя, так как центр иона не может подойти к поверхности металла на расстояние меньше, чем его радиус. Отсюда, в частности, вытекает, что в плотном слое потенциал изменяется линейно с расстоянием и, следовательно, градиент потенциала в этом слое сохраняет постоянную величину гр/б (где лр — изменение потенциала в двойном слое (рис. 79)). Изменение потенциала "ф] в диффузном слое происходит по некоторой кривой. Это изменение представляет собой разность потенциалов между границей плотной части двойного слоя АА и точкой в растворе, в которой концентрации — с . Общая разность потенциалов между металлом и электролитом е равна е = яр +т1)1. [c.345]

    Чапманом. Такое предпо-ложенне было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхностн раздела металл — электролит, образуя ге./1ьмгольцевскую пли конденсированную обкладку двойного слоя с толщиной, отвечающей среднему радиусу попов электролита. Здесь Штерн следовал принципам, заложенным во втором приближении теории Дебая и Гюккеля. Таким образом, успехи теории растворов в свою очередь содействовали развитию теории двойного электрического слоя иа границе электрол — электролит. Остальные иопы, входящие в состав двойного слоя внутри гел ьм гол ьцеп с ко й обкладки, по ис удерживаемые жестко на поверхности раздета, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами нонов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются за счет не только [c.267]

    Для ряда значений зарядов по уравнению (12.18) определяется емкость диффузной части дво1Гного слоя, а ио (12.15) — емкость его плотной части для эталонного раствора (1,0 М KF). Согласно предположенню емкость плотного слоя не зависит от концентрации, поэтому по кривым С, используя уравнение [c.273]

    Из уравнения (XX, 6) видно, что определяющей суммарную емкость двойного электрического слоя является меньшая из величин Сг и Сд. Емкость плотной части двойного слоя определяется размерами адсорбированных ионов и способностью их деформироваться под действием электрического поля. Поэтому при постоянной температуре Сг является функцией только заряда поверхности и не зависит от концентрации электролита. Обычно величины емкости плотного слоя лежат в пределах 20-4-40 мкф/см . В отли-чие 01 Сг, емкость диффузной части двойного слоя существенно зависит от концентрации электролита (уменьшается с разбавлением, а также с уменьшением заряда электрода). Если концентрация электролита высока, то емкость диффузной части двойного слои значительно превышает емкость слоя Гельмгольца. В этом случае [см. уравнение (XX, 6)] [c.539]

    Диффузная часть двойного электрического слоя наиболее лабильна и изменчива, Противоионы обмениваются на другие иоз1Ы того же знака. Повышение концентрацни раствора пр Шодит к вытеснению противононов нз диффузной в плотную часть двойного электрического слоя. Толщина двойного электрического слоя и величина -потенциала уменьшаются. При некоторой кот ,ентра-ции раствора (примерно 0,1 и.) все противоионы оказываются [c.331]

    Однако прочно к поверхности ионы К+ не присоединяются (они образуют с поверхностью растворимые соединения), а так как их концентрация около поверхности больше, чем в растворе, то они диффундируют в сторону меньшей концентрации, т. е. от поверхности в раствор. На поверхности кристалла Ag l возник двойной электрический слой (рис. 36), состоящий из внутренней обладки, или адсорбционного слоя (ионы 1 ), и наружной обкладки, или слоя противоионов (ионы К+). Часть противоионов связана с поверхностью относительно прочно и входит в плотный слой остальные противоионы, со-вершаюшие тепловое движение около поверхности, составляют диффузную часть ДЭС (диффузный слой). Распределение противоионов между плотной и диффузной частями ДЭС определяется соотношением между электростатически.м притяжением ионов к поверхности и их диффузией в раствор последняя определяется тепловым движением ионов и зависит от разности концентраций в ДЭС и объеме раствора. [c.65]

    В случае ионогенных ПАВ в дополнение к дегидра-таци 1 действует фактор, связанный с изменением состояния двойного электрического слоя, образованного на поверхности ионами адсорбированного ПАВ. При введении электролитов повышается ионная сила раствора и происходит сжатие диффузной части двойного электрического слоя, в результате чего часть противоионов входит в плотный штерновский слой, т. е. происходит понижение эффективной степени диссоциации поверхностно-активного электролита. Благодаря этому понижается электростатическое отталкивание, препятствующее вхождению поверхностно-активных ионов в одноименно заряженный адсорбционный слой. [c.24]

    Адсорбционная (плотная) часть двойного электрического слоя состоит из по-тенциалопределяющих ионов и части противоионов. Диффузная часть двойного электрического слоя образована остальными противоионами. Скорость перемещения фаз в электрическом поле определяется величиной потенциала на поверхности скольжения, который поэтому назван электрокинетическим потенциалом и кратко обозначается как (-потенциал (дзета-потенциал). Этому потенциалу приписывают знак заряда твердой поверхности. [c.307]

    Диффузная часть двойного электрического слоя наиболее лабильна и изменчива. Противоионы обмениваются на другие ионы того же знака. Повышение концентрации раствора приводит к вытеснению противоионов из диффузной в плотную часть двойного электрического слоя. То.лщина двойного электрического слоя и величина -потенциала уменьшаются. При некоторой концентрации раствора (примерно 0,1 н) все противоионы оказываются вытесненными в адсорбционный слой и С-потенциал становится равным нулю. В этом случае изменение межфазового потенциала от его максимального значения на поверхности твердой фазы до нулевого целиком происходит в пределах адсорбционного слоя. Такое состояние коллоидной мицеллы называют изоэлектрическим состоянием. [c.307]

    Остановимся немного на рассмотрении явления потенциала седиментации, так как данных по исследованию этого электрокинетического эффекта пока еще очень мало. Частицы твердого тела, несущие заряд на своей поверхности и осаждающиеся в жидкой среде, при своем движении оставляют за собой диффузную часть двойного слоя, которая, следовательно, смещается по отношению к движущейся частице с плотным, пристенным слоем. Если поместить два обратимых одинаковых электрода (например, Ад/АдС1) на различной высоте в сосуде с осаждающейся суспензией, то возникает между ними разность потенциалов сед, как это было впервые показано Дорном в 1878 г. [c.139]

    Полагают, что специфически адсорбирующиеся ионы входят в плотную часть двойного слоя, частично десольватируясь при этом со стороны поверхности электрода. Поэтому плоскость локализации электрических центров этих ионов (внутренняя плоскость Гельмгольца) удалена от поверхности электрода на расстояние дг = Xj, меньшее, нежели внешняя плоскость Гельмгольца (х х. ), которая служит границей диффузной части двойного слоя. Таким образом, для специфически адсорбирующихся ионов i [c.144]

    Для количественного описания этого эффекта можно воспользоваться эквивалентной схемой, представленной на рис. 2.19 и основанной на следующих модельных допущениях 1) плотная часть двойного электрического слоя подчиняется модели двух параллельных конденсаторов 2) внешняя плоскость Гельмгольца является эквипотенциальной. Кроме того, обычно предполагают, что свойства диффузной части двойного слоя можно описать теорией Гуи-Чапмена и, следовательно, применить уравнение (2.95). [c.74]


Смотреть страницы где упоминается термин Плотная и диффузная части ДЭС: [c.353]    [c.537]    [c.538]    [c.539]    [c.330]    [c.473]    [c.103]    [c.103]    [c.67]    [c.36]    [c.323]    [c.473]    [c.229]    [c.230]    [c.159]   
Смотреть главы в:

Новый справочник химика и технолога Электродные процессы Химическая кинетика и диффузия Коллоидная химия -> Плотная и диффузная части ДЭС




ПОИСК







© 2025 chem21.info Реклама на сайте