Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гальванические элементы.. Электродные потенциалы и электродвижущая сила гальванического элемента

    Под потенциометрией понимается ряд методов анализа и определения физико-химических характеристик электролитов и химических реакций, основанных на измерении электродных потенциалов и электродвижущих сил гальванических элементов. Потенциометрические измерения являются наиболее надежными при изучении констант равновесия электродных реакций, термодинамических характеристик реакций, протекающих в растворах, определении растворимости солей, коэффициентов активности ионов, pH растворов. Особенно общирное применение нашли потенциометрические измерения именно при определении pH, которое является важнейшей характеристикой жидких систем. Для этого используют электрохимическую цепь, составленную из электрода сравнения и индикаторного электрода, потенциал которого зависит от концентрации (активности) ионов Н (так называемые электроды с водородной функцией). К таким электродам относятся, например, рассмотренные ранее водородный и стеклянный электроды. [c.264]


    Как известно из физической химии, скачок потенциала между двумя фазами не может быть измерен, но можно измерить компенсационным методом электродвижущую силу элемента, составленного из исследуемого электрода (например, металла в электролите) и электрода, потенциал которого условно принят за нуль. Таким электродом служит стандартный водородный электрод, а электродвижущую силу гальванического элемента, составленного из стандартного водородного электрода и из исследуемого электрода, принято называть электродным потенциалом, в частности электродным потенциалом металла. [c.150]

    Скачки потенциалов на границах фаз 365 2. Электродвижущая сила гальванического элемента 368 3. Типы электродов 371 4. Стандартные электродные потенциалы и правило знаков 373 5. Концентрационные элементы. Диффузионный потенциал 375 6. Зависимость ЭДС от температуры 377 7. Измерение некоторых физико-химических величин методом ЭДС 380 8. Электродные процессы 382" [c.400]

    Стандартные потенциалы металлов, расположенные в порядке возрастания их алгебраической величины, образуют так называемый ряд напряжений металлов, или ряд стандартных электродных потенциалов. Для определения электродвижущей силы (ЭДС) гальванического элемента следует из стандартного потенциала с большей алгебраической величиной вычесть стандартный потенциал с меньшей алгебраической величиной. Так, ЭДС медно-цинкового гальванического элемента составляет (см. приложение V) [c.126]

    Зависимость электродного потенциала ( с) от моляльной концентрации рассматриваемого иона (С) при обычных условиях приближенно определяется уравнением Ее = Еа+ (0,06 п)1е С, где п — валентность иона. Соотношение это дает прежде всего возможность уточнить значение электродвижущей силы гальванического элемента путем учета концентрации (точнее, активности) содержащегося в нем электролита. Оно же показывает, что процесс вытеснения одним металлом другого по существу обратим, так как с достижением равенства значений Ес устанавливается равновесное состояние. [c.207]

    Для измерения относительного электродного потенциала какого-либо металла составляют гальванический элемент из стандартного водородного электроде и нз исследуемого металлического электрода, погруженного в раствор, содержащий 1 моль/л ионов данного металла измеряют электродвижущую силу составленного элемента и, взяв полученное значение ее с обратным знаком, вычисляют электродный потенциал металла (если исследуемый металл является в составленном элементе анодом). Установка для определения электродных потенциалов металлов с помощью водородного электрода показана на рис. 29. Для внешней цепи водородный электрод будет положительным полюсом, если в паре с ним находится электрод из активного металла, и отрицательным, если в паре с ним находится электрод из неактивного (благородного) металла. [c.205]


    Знаки электродных потенциалов во всех случаях приведены только для реакций восстановления. Для обозначения потенциала и электродвижущей силы гальванического элемента используется буква Е. [c.14]

    Электродным потенциалом является электродвижущая сила гальванического элемента, составленного из двух электродов, потенциал одного из которых подлежит определению, а потенциал другого условно принимается за нуль. Таким электродом служит нормальный водородный электрод. Потенциалы, отсчитанные от этого электрода, выражаются по водородной шкале , [c.50]

    Диффузионный потенциал з, по сравнению с потенциалами т и Я2, весьма мал и выражается в милливольтах. Контактный потенциал тп, в отношении величины которого имеются большие разногласия среди исследователей, при определении электродвижущей силы гальванических элементов входит как слагаемое в значение и пг. Поэтому при вычислении электродвижущей силы цепей мы будем принимать во внимание лишь значения электродных потенциалов Я1 и па согласно осмотической теории. [c.62]

    Электродвижущая сила гальванического элемента и вообще любого химического источника тока может быть представлена как алгебраическая разность электродных потенциалов Е = — чгд. Первым членом этой разности условились принимать потенциал катода, а вторым потенциал анода (см. стр. 101). [c.62]

    Электродвижущая сила гальванического элемента равна разности его электродных потенциалов Е — Ег, где Е — электродвижущая сила элемента, а 1 и Е — электродные потенциалы. Абсолютное значение электродного потенциала измерить нельзя, но можно определить электродвижущую силу гальванического элемента, составленного из двух электродов, причем потенциал одного из них условно принять равным нулю. Безусловно, при этом измеряют не абсолютную величину электродного потенциала, а его относительное значение. В качестве электрода с нулевым потенциалом принят нормальный водородный электрод (рис. 75), представляющий собой пластинку с нанесенной на нее мелко раздробленной платиной (платиновая чернь), погруженную в раствор серной кислоты. Через раствор пропускают газообразный водород, который адсорбируется платиной. Тогда водородный электрод ведет себя так, как если бы [c.227]

    Электродвижущая сила (ЭДС) и электродный потенциал являются важнейшими понятиями электрохимии. ЭДС — это разность потенциалов ф между двумя электродами. Для измерения ЭДС гальванических элементов один из электродов выбирается за стандартный, т. е. электрод сравнения. [c.286]

    При измерении электродных потенциалов металлов определяют электродвижущую силу гальванического элемента, в котором потенциал одного электрода (стандартного) известен. [c.28]

    ЧТО в водных растворах сильные электролиты почти полностью диссоциированы, теория сильных электролитов основывается на концепции активности и на стандартных электродвижущих силах гальванических элементов Е°, отвечающих стандартному изменению свободной энергии реакции при активностях, равных единице. Для сравнения был выбран водородный потенциал, поэтому стандартным электродным потенциалом называется э. д. с. гальванического элемента, состоящего из данного электрода (погруженного в раствор, где активность его ионов равна единице) и стандартного водородного электрода, потенциал которого условно принимается равным нулю [101]. [c.120]

    Стандартную электродвижущую силу гальванического элемента ( ° ) удобно подсчитывать, как алгебраическую сумму стандартных электродных потенциалов. Для этого следует потенциал положительного электрода гальванического элемента брать с тем знаком, который дан в таблице, а потенциал отрицательного электрода с обратным. Поэтому для С(1 — 2п гальванического элемента  [c.137]

    Электродвижущая сила гальванического элемента может рассматриваться как сумма нескольких отдельных скачков потенциала на границе между различными фазами. Существуют три различных типа скачков потенциалов. Электродные потенциалы Е — на границе металл — раствор, контактные потенциалы е , возникающие на границе соприкосновения двух металлов, диффузионные потенциалы бд, суммарная величина этих трех потенциалов и обусловливает возникающую разность потенциалов или электродвижущую силу гальванического элемента.  [c.366]

    Некоторые ошибочные взгляды. Сделанные выше выводы, по-видимому, привели к предположению о возможности определения наиболее опасных контактов на основании данных таблицы нормальных электродных потенциалов. Известно, что электродвижущая сила гальванического элемента Даниэля, состоящего из двух металлов, помещенных в растворы собственных ионов эквивалентных концентраций, может быть приближенно определена вычитанием значения нормального потенциала отрицательного металла из значения нормального потенциала более положительного металла с учетом знаков. При таких условиях чем дальше отстоят друг от друга два металла в таблице нормальных потенциалов, тем больше будет электродвижущая сила такой пары. [c.179]

    Разность электродных потенциалов — это электродвижущая сила (ЭДС) гальванического элемента. Так как водородный электрод служит электродом сравнения, для которого о=ОВ, то измеряемая ЭДС рассматриваемого элемента — это потенциал медного электрода по отношению к водородному. Ниже значения электродных потенциалов будем обозначать символом Е (иногда пользуются символом ф), как и ЭДС электродных реакций. Таким образом, потенциалы металлов можно сравнивать по ЭДС гальванической цепи с водородным электродом. [c.326]


    Разность электродных потенциалов Е — это электродвижущая сила (эдс) гальванического элемента. Так как водородный электрод служит электродом сравнения, для которого °н /н2 = = 0, то измеряемая эдс рассматриваемого элемента — это потенциал медного электрода по отношению к водородному. [c.261]

    Электродвижущая сила (Е) гальванического элемента определяется как разность двух электродных потенциалов - катода и анода, т. е. из потенциала окислителя (Уок.) вычитается потенции восстановителя (ув)  [c.56]

    Если пластинку металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25 °С, и характеризует стандартный электродный потенциал металла. [c.80]

    Основной характеристикой гальванического элемента является его электродвижущая сила, которая представляет собой разность электродных потенциалов в исходный момент работы элемента (из более положительного электродного потенциала вычитается более отрицательный потенциал). В нащем примере получаем [c.208]

    Основной причиной электрохимической коррозии является термодинамическая неустойчивость металла в данном электролите, величина которой определяется величиной стандартного электродного потенциала. Как правило, чем более отрицательное значение потенциала, тем менее термодинамически устойчив данный металл. Поскольку экспериментально и теоретически до сих пор не удается установить абсолютные значения потенциалов, то их определяют по отношению к стандартному водородному электроду, потенциал которого условно принимается равным нулю во всех средах и при всех температурах. Электродвижущую силу гальванического элемента, состоящего из стандартного водородного электрода и исследуемого электрода в растворе электролита, называют электродным потенциалом. Помимо водородного электрода, в качестве электродов сравнения могут быть использованы другие электроды, на поверхности которых в растворе протекают обратимые электрохимические реакции с постоянным значением электродного потенциала по отношению к водородному электроду (кислородный, каломельный, хлоросеребряный, медно-сульфатный и др.). [c.15]

    В начале настоящей главы излагаются основные принципы метода электродвижущих сил, описываются условные обозначения для гальванических элементов, а также условия, касающиеся знаков электродвижущей силы и стандартных электродных потенциалов. Затем излагается термодинамика гальванических элементов с жидкостными соединениями и без жидкостных соединений, причем это изложение связывается с результатами исследований растворов. Далее подробно рассматриваются гипотетический потенциал жидкостного соединения, понятие об электрическом потенциале на границе раздела фаз, проблема индивидуальных химических потенциалов и активностей ионов. В конце главы обсуждается вопрос о тех ограничениях, которые возникают при использовании элементов с жидкостными соединениями из-за наличия диффузионных потенциалов, а также описывается удобный способ устранения последних. [c.285]

    Прямое измерение электродных потенциалов отдельных металлов практически не осуществимо. Поэтому принято измерять разность потенциалов между двумя различными металлическими электродами, погруженными в растворы соответствующих солей, т. е. определять, насколько потенциал одного металла больше или меньше потенциала другого металла. Не представляет сложности два электрода соединить при помощи электронного проводника в один гальванический элемент и определить измерителем тока электродвижущую силу (э.д.с.) или напряжение этой цепи. Измерение электродвижущей силы этого элемента позволяет характеризовать величину потенциала одного электрода по отношению к [c.17]

    Максимальная разность потенциалов менаду электродами гальванического элемента называется электродвижущей силой (э. д. с.). Электродный потенциал выражается уравнением Нернста [c.49]

    Измерение потенциала одного изолированного электрода неосуществимо, поэтому измеряют электродвижущую силу (э. д. с.) гальвани ческого элемента, состоящего из двух полуэлементов значение э. д с равно разности электродных потенциалов этих двух полуэлементов Если гальванические элементы составлять всегда с одним и тем же полу элементом, электродный потенциал которого имеет постоянное значение, и различными другими полуэлементами, то, измерив э. д. с., можно найти значения электродных потенциалов окислительно-восстановительных систем по отношению к потенциалу выбранного полуэлемента, служащего в данном случае электродом сравнения ( ср). [c.314]

    Практические определения сводятся к измерению электродвижущей силы Е гальванического элемента, составленного из двух полуэлементов один полуэлемент включает нормальный водородный электрод, другой — электрод, относительный потенциал которого определяется (рис. 41). Условились направление электродного потенциала считать от электрода к раствору. Так как Е всегда положительна, то возможны два случая  [c.166]

    Практически электродные потенциалы определяют при помощи гальванических элементов (см. рис. 54) —устройств из двух электродов, помещенных в раствор (или растворы) электролитов. Разность потенциалов электродов называется электродвижущей силой (э. д. с.) гальванического элемента. При определении стандартного (нормального) электродного потенциала ме в качестве одного из электродов берут водородный. Он будет положительным полюсом [c.154]

    Зная электродные потенциалы металлов, можно вычислить электродвижущую силу (напряжение) гальванического элемента, построенного из заданной пары. Для этого нужно из потенциала положительного электрода вычесть потенциал отрицательного. Например, для пары 2п—Си имеем =-(-0,34—(—0,76) = 1,10 в. [c.150]

    Значение электродного потенциала количественно характеризует способность металла отдавать электроны, т. е. его восстановительные свойства. На протекании окислительно-восстановительных реакций основано действие гальванических элементов. Знание электродных потенциалов металлов позволяет изготовлять гальванические элементы с заранее заданной электродвижущей силой (э.д. с.). [c.139]

    Только золото и платина устойчивы в обычных атмосферных условиях к коррозии. Приведенные в табл. 12 и 13 данные представляют собой относительные значения нормальных электродных потенциалов, т. е. разность потенциалов между исследуемым электродом и стандартным электродом сравнения (за нуль принят электродный потенциал нормального водородного электрода). Если же стандартный электрод заменим вторым металлом, опустим их в раствор электролита и замкнем цепь, то получим гальванический элемент, электродвижущая сила [c.121]

    Зная стандартные электродные потенциалы металлов, можно вычислить электродвижущую силу (э. д. с.) гальванического элемента. Для этого надо из потенциала электрода, имеющего боль- [c.183]

    НлО+ -1-е-=Н-1-Н20 Если пластинку металла, погруженную в раствор его соли с активностью ионов, равной единице, соединить со стандартным водородным электродом, как показано на рис. 62, то получится гальванический элемент (электрохимическая цепь), электродвижущую силу (ЭДС) которого легко измерить. ЭДС, измеренная при 25 °С, и будет величиной стандартного электродного потенциала металла. Стандартный электродньсй потенциал обычно обозначают Е°. [c.230]

    Поскольку непосредственно измерить абсолютные потенциалы на электродах не удается, условились определять электродные потенциалы по отношению к стандартному водородному электроду, потенциал которого принят равным нулю. Учитывая, что каждый гальванический элемент состоит из двух полу элементов, для экспериментального определения потенциала исследуемой пары (например, и т.д.) берут дополнительно полуэлемент с водородным электродом и измеряют электродвижущую силу этого гальванического элемента. Таким образом получают относительные данные о силе различных восстановителей и окислителей (см. "Потенциометрический анализ", гл. XXXI). [c.68]


Смотреть страницы где упоминается термин Гальванические элементы.. Электродные потенциалы и электродвижущая сила гальванического элемента: [c.254]    [c.206]    [c.268]    [c.33]    [c.207]    [c.190]    [c.164]    [c.234]    [c.289]    [c.270]    [c.222]   
Смотреть главы в:

Сборник задач и упражнений по физической и коллоидной химии -> Гальванические элементы.. Электродные потенциалы и электродвижущая сила гальванического элемента




ПОИСК





Смотрите так же термины и статьи:

Гальванический элемент

Гальванический элемент электродвижущая сила

Гальванический элемент электродные потенциалы

Потенциал электродный потенциал

Электродвижущая сила ЭДС

Электродвижущие силы Электродные потенциалы

Электродный потенциал

гальванические



© 2025 chem21.info Реклама на сайте