Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал ионизации других элементов

    Положение атомов примеси в кристалле может быть различным. В одних случаях такой атом (или ион) заменяет в одном из узлов решетки атом (или ион) основного вещества примеси замещения)-, в других — атомы (или ионы) примеси размещаются между,узлами решетки примеси внедрения). К примесям причисляют также атомы или ионы одного из элементов, содержащихся в данном соединении, при избыточном содержании их по сравнению со стехиометрическим составом. Следует заметить, что энергия, необходимая для отделения электрона от атомов примесей в кристалле (в среде с высокой диэлектрической постоянной), нередко бывает в десятки раз меньше, чем потенциал ионизации этих атомов в свободном состоянии. Для характеристики полупроводников пользуются также величиной Е — работой выхода электрона (см. 50). [c.147]


    В главных подгруппах периодической системы восстановительная способность нейтральных атомов растет с увеличением порядкового номера. Так, в ряду —Сз, например, Ь проявляет восстановительные свойства гораздо слабее, чем другие элементы, а наиболее сильный восстановитель — Сз, если восстановительную способность характеризовать величиной потенциала ионизации. Но литий имеет более электроотрицательную величину стандартного электродного потенциала, чем цезий, и в ряду напряжений расположен выше его. [c.94]

    Потенциал ионизации — это энергия, необходимая для удаления электрона из атома, находящегося в наинизшем по энергии состоянии, приче л электрон и ион в конечном состоянии имеют нулевую кинетическую энергию. Другими словами, это минимальная энергия, необходимая для отрыва электрона. На рис. 4.1 показано изменение потенциала ионизации с изменением атомного номера в периодической таблице. Главные пики приходятся на атомы благородных газов, в то время как впадины соответствуют щелочным металлам. Чем меньше потенциал ионизации, тем легче элемент образует ионные соединения, в которых он положительно заряжен. [c.55]

    Существование тяжелых переходных элементов в высших степенях окисления целесообразно сопоставить с изменением их потенциалов ионизации. Рассмотрение табл. 48 и 57 показывает, что в то время как первые два потенциала ионизации у элементов всех трех периодов сравнительно близки, третий и высшие потенциалы ионизации тяжелых элементов заметно меньше, чем у легких. Такая закономерность, характеризующая ионизацию -электронов, типична и для других групп элементов, где также наблюдается понижение потенциалов ионизации при переходе сверху вниз по группе. Следует обсудить значения первых двух потенциалов ионизации, относящихся к 5-электронам. В общем 5-электроны в значительной мере проникают во внутренние слои и, следовательно, должны лучше удерживаться у атомов с большими эффективными ядерными зарядами. Таким образом, при переходе сверху вниз в группах переходных элементов первый этап ионизации должен становиться труднее, а последующие этапы — сравнительно легче. Хотя для полного [c.224]

    Во всех известных соединениях литий одновалентен, что объясняется высоким значением энергии отрыва второго электрона (см. выше). Наименьший среди других щелочных металлов атомный радиус лития и, соответственно, наибольший первый потенциал ионизации определяют относительно меньшую химическую активность лития в ряду элементов главной подгруппы I группы периодической системы элементов. Из всех щелочных металлов только у атома лития оболочка, ближайшая к валентному электрону, подобна оболочке атома гелия и является поэтому устойчивой (электронная конфигурация атома натрия уже ls 2s 2p 3s ). Устойчивая оболочка атома лития оказывает большое поляризующее действие на другие ионы и молекулы, но сама весьма мало поляризуется под их действием. Поэтому литий выделяется из всех щелочных металлов [12] наибольшим коэффициентом поляризации (1,64) и наименьшим коэффициентом поляризуемости (0,075). [c.14]


    Более высокая химическая активность криптона, ксенона и района по сравнению с первыми членами группы благородных газов объясняется относительно низкими потенциалами ионизации их атомов (см. табл. 38). Для криптона, ксенона и радона эти величины близки к потенциалам ионизации некоторых других элементов (например, потенциал ионизации атома азота равен 14,53 В, атома хлора — 12,97 В). [c.669]

    ЦИИ возрастает. На свойствах галлия, кроме того, сказывается и /-сжатие. Поэтому от 1п к Т1 размер атома и иона увеличивается незначительно, а потенциал ионизации даже несколько возрастает. Остальные свойства элементов подгруппы галлия изменяются в той же последовательности, как и в других подгруппах р-элементов. [c.536]

    Окислительно-восстановительные свойства элементов и их соединений можно предсказать, пользуясь периодической системой элементов Д, И. Менделеева. Типичными восстановителями (донорами электронов) являются а) простые вещества, атомы которых обладают наименьшей электроотрицательностью (элементы главных подгрупп I и II групп, а также металлы побочных подгрупп), причем чем меньше потенциал ионизации металла /, тем более сильным восстановителем он является. Среди этих веществ водород и кокс чаще других металлов используют А1, 2п, Ре, 5п  [c.81]

    Особый интерес представляет сродство к электрону элементов группы 5А. В основном состоянии атомы элементов группы 5А обладают электронной конфигурацией пБ пр пр пр. Другими словами, в соответствии с правилом Гунда все валентные р-ор-битали этих атомов наполовину заполнены электронами, спины которых ориентированы в одинаковом направлении. Присоединение электрона к такой довольно устойчивой конфигурации энергетически невыгодно, и действительно, сродство к электрону азота близко к нулю или даже несколько положительно (см. разд. 6.6, ч. 1). Значения сродства к электрону для других элементов группы 5А отрицательны, но все же присоединение электрона к любому элементу группы 5А приводит к выделению значительно меньшей энергии, чем для элементов группы 6А или 7А. Наличие устойчивой, наполовину заполненной электронной подоболочки ответственно также за относительно высокие значения энергии ионизации элементов группы 5А, особенно в случае азота, который имеет более высокий потенциал ионизации, чем кислород. [c.314]

    Другой важной характеристикой атома является сродство к электрону. В химических реакциях атомы элементов могут не только отдавать свои, но и присоединять избыточные электроны. Стремление нейтрального атома к присоединению избыточного электрона характеризуется величиной сродства к электрону. Измеряется эта величина обычно, так же как и потенциал ионизации, в электрон-вольтах. Величины сродства к электрону Е для элементов первых трех периодов приведены в табл. 5. [c.65]

    В табл. 3 приведены значения энергий ионизации некоторых атомов. Из нее следует, что наименьшее значение / 1 имеют щелочные металлы и что для данного элемента при переходе от одного значения I к другому Часто наблюдается резкое изменение потенциала ионизации. Так, для бора отрыв 4-го и 5-го электронов требует примерно десятикратной (по сравнению с 1, 2 и З-м электронами) затраты энергии. Последнее обстоятельство непосредственно свидетельствует о группировке электронов в слои. В табл. 3 указанные скачки отмечены ступенчатыми линиями. [c.52]

    Таким образом, потенциал ионизации нейтральных атомов ЩЭ, несмотря на его значительную величину, все же существенно меньше, чем такая же величина для атомов других элементов. Это объясняет, почему атомы ЩЭ склонны образовывать соединения с ионной связью и находиться в форме однозарядных катионов. Возможен отрыв и [c.6]

    У бериллия, как уже сказано, под внешними з-электронами расположена оболочка инертного газа. Но в то же время это оболочка гелия с двумя -электронами. Такое строение определяет малый объем атома, недостаточную экранизацию внешних электронов и, как следствие, большой потенциал ионизации. С этим связаны характерные особенности бериллия, отличающие его от других элементов подгруппы. [c.165]

    Потенциал ионизации и сродство к электрону — важные характеристики реакционной способности атомов элемента. Если атомы двух элементов сильно отличаются между собой значениями потенциалов ионизации, то у одного из них будет низкий потенциал ионизации, а у другого — высокое сродство к электрону. Такие атомы будут легко реагировать друг с другом с образованием прочной связи. Практическое использование этих характеристик ограничено тем, что они относятся к изолированным атомам, т. е. к газообразным состояниям. Если же атомы находятся не в изолированном состоянии, то принято пользоваться другой характеристикой, называемой электроотрицательностью, т. е. способностью атома притягивать к себе электроны, обобществляемые при образовании химической связи. Мерой электроотрицательности является энергия, равная арифметической сумме энергии ионизации [c.53]


    Энергии ионизации и сродства к электрону в совокупности характеризуют относительную способность атомов перетягивать к себе электроны от другого атома. Чем больше потенциал ионизации, тем труднее удаляется электрон от данного атома. Чем больше сродство к электрону, тем сильнее он притягивает к себе электроны другого атома. Оба эффекта обобщает характеристика элемента, названная его электроотрицательностью. Она может быть оценена как полусумма потенциала ионизации (/) и энергии сродства к электрону Е)  [c.65]

    Часть электрических зарядов не участвует в образовании сигнала (ионного тока) из-за утечки зарядов на корпус д тектора и зажигающий элемент. Наиболее полный сбор зарядов достигается при наибольшей напряженности поля у среза горелки в зоне ионизации. Этому условию отвечает применение электрода-коллектора в форме цилиндра, когда плоскость его нижнего среза на 1—2 мм выше горелки, расположенной по оси цилиндра. При этом пламя находится практически внутри цилиндра. Такая система электродов обеспечивает не только высокую чувствительность, но и наиболее широкий линейный диапазон (увеличение максимальной концентрации). Излишнее приближение коллектора к горелке может вызвать перегрев электрода и эмиссию положительных ионов с его поверхности. Для исключения этого на коллектор должен быть подан отрицательный потенциал. С другой стороны, отрицательный потенциал на горелке препятствует рекомбинации положительных ионов и обеспечивает их полный сбор. При оптимальном выборе конструкции и положения электродов ток насыщения практически одинаков при любой полярности электродов. [c.58]

    При рассмотрении физических свойств и характера их изменения в периодической системе следует различать атомные свойства (свойства элементов) и свойства простых веществ (гомоатомных соединений). Кроме того, физические свойства простых веществ могут характеризовать обе формы химической организации вещества (молекула и кристалл) или только одну из них. Очевидно, такие свойства, как температура плавления и кипения, твердость и вязкость, электрическая проводимость и т. п., относятся только к конденсированному состоянию вещества. С другой стороны, например, магнитные свойства (диа- или парамагнетизм) характерны как для кристаллов, так и для молекул. Элементы (изолированные атомы) характеризуются сравнительно небольшим набором ([)пзи-ческих свойств заряд ядра, атомная масса, орбитальный радиус, потенциал ионизации, сродство к электрону. [c.32]

    Таким образом, оптимальная температура плазмы, при которой достигается максимальная интенсивность линии, зависит от потенциала ионизации данных атомов и энергии возбуждения данной спектральной линии кроме того, степень ионизации, а следовательно, и интенсивность спектральной линии зависят от химического состава плазмы и концентраций в ней других элементов. [c.360]

    Чтобы вычислить Ig ki= g p-ri щелочных металлов, нужно брать первый потенциал ионизации, щелочноземельных металлов — второй потенциал ионизации, металлов, образующих полуторные окислы,— третий потенциал ионизации и т. д. (табл. 8). У элементов с переменной валентностью берем соответственно разные потенциалы ионизации. Например, у титана получаем две константы одну для Ti (IV), другую для Ti (П1), у железа одну для Fe (HI), другую — для Fe (II). Для галогенов, аналогов кислорода, азота, образующих отрицательно заряженные ионы, нужно брать вместо потенциала ионизации сродство электрона к атому. [c.25]

    В первом периоде, уникальном по своей малой протяженности и по специфическим свойствам составляющих его элементов — водорода и гелия, можно отметить практическую неспособность водорода (см. т. 1, гл. XXX) к образованию я-связей, а у гелия отсутствие соединений даже со фтором. Высокий потенциал ионизации атома водорода (13,65 5в), весьма заметно превышающий соответствующую величину для атома лития (5,390 эв), влечет за собой резкое отличие химического поведения этих двух элементов, хотя валентность их одинакова и равна номеру группы, т. е. единице. Не следует, однако, сомневаться в логичности помещения Н и Ы в одну группу, ведь и в других группах Системы находится часто в верхней части неметалл (например, С), а в нижней — металл (соответственно РЬ) в верхней части твердый металл цинк, а внизу жидкая ртуть. [c.39]

    Потенциал ионизации и сродство к электрону характеризуют способность элемента вступать в химические реакции с другими элементами. Если у одного элемента очень низкий потенциал ионизации, а у другого элемента очень высокое сродство к электрону, следует ожидать, что такие [c.102]

    По разным источникам, размер радиуса иона натрия колеблется от 0,095 до 0,099 нм [506]. Первый потенциал ионизации натрия равен 8,22-10-19 Дж (5,138 эВ), второй — 75,68-Ю" Дж (47,29 эВ). Низкий потенциал ионизации внешнего электрона и тот факт, что образующийся ион Na имеет конфигурацию атома инертного газа и является, таким образом, сферическим и слабо поляризуемым, влияет на химические свойства щелочных металлов, особенно на свойства их ионов М . Другие состояния окисления этих элементов неизвестны исходя из величин вторичной ионизации трудно предположить их существование . [c.10]

    Для того чтобы оценить количественно способность атома в молекуле притягивать к себе электроны, т. е. оценить величину электроотрицательности, можно исходить из того, что электроотрицательность элементов пропорциональна среднеарифметическому между величинами потенциала ионизации и сродством к электрону (Малликен, 1935 г.). Из табл. 1.2.2 следует, например, что в ряду С—Р, С—О и С—N энергия связи понижается. То же относится и к связям С—Р и С—С1. Энергия связи тем больше, а связь соответственно тем прочнее, чем она поляр-нее, чем больше различие в электроотрицательности образующих ее партнеров. Между противоположными по знаку частичными зарядами действуют дополнительные силы притяжения. Таким образом, из значений энергий связей можно рассчитать различие в электроотрицательности. Такие вычисления провел Полинг (1939 г.) [1.2.10]. Для того чтобы от разностей перейти к абсолютным величинам, Полинг в качестве элемента сравнения выбрал наиболее электроотрицательный элемент— фтор, величину электроотрицательности которого он принял равной 4,0 и, исходя из этого, рассчитал значения для других элементов  [c.75]

    Подгруппу образуют шесть элементов Ве, Mg, Са, Зг, Ва и Ка. Радий не имеет стабильных изотопов, в микроколичествах сопутствует урану. Химию радия, как и других радиоактивных изотопов, изучает радиохимия. Ввиду большого сходства в свойствах Са, 8г и Ве со щ елочными металлами 1А подгруппы их часто называют щелочно-земельными металлами. Атомы всех элементов имеют электронную структуру па , поэтому единственная степень окисления +2. Все металлы являются хорошими восстановителями, хотя, ввиду большего потенциала ионизации, и более слабыми, чем щелочные металлы (см. табл. 3, раздел 4.5). Из-за значительного увеличения размера атома от Ве к Ва и уменьшения потенциала ионизации восстановительная способность увеличивается в этом ряду настолько, что Са, 8г и Ва разлагают воду с выделением водорода и должны храниться, как и щелочные металлы, под слоем керосина или масла. На высокой восстановительной способности основано применение магния и кальция в металлотермических процессах для восстановления элементов из оксидов титана, урана, бора, редкоземельных и других элементов. [c.136]

    Строение атома азота характеризуется электронной конфигурацией 1з 2з 2р . Три р-электрона занимают разные орбитали 2рх, 2ру, 2рг и их спины неспарены. Потенциалы ионизации азота (эВ) /1 = 14,54, /2 = 29,60, /з = 47,43 — гораздо больше потенциалов ионизации других элементов V группы. Изменение первого потенциала ионизации элементов от фосфора (10,48) до висмута (7,29) меньше, чем различие между азотом и фосфором, что является еще одним указанием на своеобразный характер элементов второго периода. Высокое значение потенциала ионизации азота объясняет отсутствие соединений, содержащих положительные ионы азота (о их образовании в атмосфере см. ниже). [c.173]

    Общая схема процессов, ведущих к ионизации свободных атомов, показана на рис. 14.64. Ионизация атомов может происходить при поглощении ими фотонов с энергией, превышающей потенциал ионизации данного элемента (рис. 14.64, а). Такая ионизация неселективна. Процесс ионизации становится селективным, если атомы предварительно переведены в высоковозбужденное состояние (рис. 14.64, б). Эта задача в методе АИСА решается с гюмощью лазеров (рис. 14.64, е, д). Благодаря тому, что спектральная ширина линий лазерного излучения очень мала, можно подобрать условия, при которых будут возбуждаться только атомы определяемого элемента, а атомы всех других элементов останутся невозбужденными. Селективность возбуждения будет тем выше, чем через большее число промежуточных ступеней атом переходит в высоковозбужденное состояние. [c.855]

    Эти наблюдения побудили искать численную характеристику, которую можно было бы приписать каждому элементу для указания его опособности притягивать электроны. Известно, что одной из таких характеристик для газообразных атомов является их потенциал ионизации. Другой характеристикой служит сродство к электрону газообразных атомов, т. е. способность нейтрального газообразного атома присоединять дополнительный электрон и образовывать отрицательно заряженный газообразный ион. Введенное (Полингом определение относительной электроотрицательности элвхмента основано на двух следующих уравнениях  [c.428]

    Схема спектрографической установки показана на рис. 56, б. Регистрирующим прибором служит спектрограф J2, а в качестве спектроскопического источника света используется спектроскопическая импульсная лампа /, свет от которой, пройдя реакционный сосуд и спектрограф, попадает на фотопластинку 13. Спектроскопическая лампа зажигается через определенный промежуток времени после вспышки фотолитической лампы при помощи блока временной задержки 14. Таким образом по.лучается полный спектр поглощения фотолизуемого раствора. Меняя время задержки, можно получить набор спектров, изменяющихся во времени. В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача таких ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в УФ-области к ксенону добавляют другие газы, например Нг, или ртуть. Используют им-пульсные лампы и с другим наполнением (Ог, N2, Аг). Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической вспышки. А время вспышки импульсной лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии и от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотнонюния между сопротивлением R, индуктивностью L и емкостью С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотпошепие Lj . Уменьшение времени затухания т достигается снижением индуктивности соединительных проводов, а также снижением емкости и индуктивности конденсатора (r yZ, ). При этом уменьшение энергии вспышки E = Wj2 компенсируется за счет увеличения напряжения на конденсаторе U. Увеличение [c.157]

    Чувствительность определений малых концентраций щелочных элементов н пламенах может быть увеличена добавлением к пробе другого щелочного металла. Увеличение аналитического сигнала в этом случае сводится к уменьшению степени ионизации определяемого элемента в присутствии другого легкоионизиру-емого элемента. Для достижения максимальной чувствительности и правильности анализа необходимо, чтобы степень ионизации определяемого элемента была минимальна и постоянна как в анализируемых пробах, так и в стандартных растворах. Степень ионизации зависит от температуры пламени, потенциала ионизации и концентрации определяемого элемеита, а также от концентрации электронов. Последняя зависит от содержания посторонних компонентов (прежде всего легкоионизируемых металлов), от стехиометрии н высоты аналитической зоны пламени. [c.162]

    Простейшими из органических радикалов являются легил (СНз) и метилен ( Hj). Первый может быть получен, например, термическим разложением тетраметилсБинца, протекающим по схеме РЬ(СНз)< = РЬ + 4СНз. По отношению к свободным элементам он сильно эндотермичен (теплота образования — 35 ккал/моль). Несмотря на наличие свободного электрона, радикал метил имеет плоское строение [тогда как радикал U—пирамидальное с d( I) = 1,74 А и zi i I = 109,5°]. Его потенциал ионизации равен 9,8 в, а время самостоятельного существования составляет тысячные доли секунды, после чего, при отсутствии других возможностей, происходит димеризации с образованием этана. [c.547]

    В других случаях решающее влияние на значение энтальпии может оказать энергия гидратации. Большие значения потенциала ионизации и теплоты сублимации при сравнительно малой теплоте гидратации характерны для малоактивных — благородных— металлов. У элементов, образующих отрицательные ионы, окислительный потенциал тем больше, чем выше энергия гидратации и сродство к электрону и чем меньше энергия образования одноатомного газа из вещества, взятого в стандартном состоянии. Латимер отметил, что, например, большая окислительная активность фтора сравнительно с иодом в основном обусловлена большей теплотой гидратации иона фтора (—514,14 кДж у фтора и —300,96 кДж у иода) различие в значениях сродства к электрону не слишком велико (—384,56 кДж у фтора и —313,5кДж у иода) .  [c.88]

    В рядах ( -элементов орбитальный радиус в пределах каждого периода уменьшается еще более плавно, чем у s- и р-элементов. В пределах каждой В-групиы, как и для s- и р-элементов, наблюдается немонотонное изменение орбитального радиуса увеличение при переходе от 3d- к 4й-элемептам и уменьшение от 4d- к Sii-эле-ментам. Следствием этого является и немонотонное изменение других характеристик атомов, определяющих их свойства (потенциал ионизации, электроотрицательность и т. п.). Это явление получило название вторичной периодичности. Для -элементов такая немонотонность объясняется тем, что впервые появляющаяся З -оболоч-ка является кайносимметричной и обусловливает меньший орбитальный радиус элементов первой вставной декады. Уменьшение орбитального радиуса 5й-элементов обусловлено, как и в преды-дугцггх случаях, лантаноидной контракцией. [c.18]

    С другой стороны, бор, находящийся слева от границы Цинтля, обладающий дефицитом валентных электронов, в виде простого вещества характеризуется неметаллическими свойствами. Из-за кайносимметричности 2/з-орбиталн и вследствие этого высоких значений потенциала ионизации и электроотрицательности бора имеет место затруднение к обобществлению электронов в пределах всего кристалла. В силу дефицита валентных электронов в кристаллических модификациях бора наблюдается их обобществление, которое ограничено локальными атомными группами. Поэтому бор образует Рис. 4. Икосаэ-сложные кристаллические решетки, структурным др — элемент кри-элементом которых служит икосаэдр (рис. 4), сталлической струк-который является своеобразным кластером , моди "°аци й бор состоящим из 12 атомов бора. [c.31]

    Первый потенциал ионизации в ряду V—Nb—Та возрастает от ванадия к ниобию незначительно (на 0,14 В), а от ниобия к танталу более резко (на 1,0 В). Это объясняется заметным уплотнением электронной оболочки тантала за счет ярко выраженного эффекта проникновения 6з-электронов под экран из 4/"-электронов. Однако вторые потенциалы ионизации в этом ряду монотонно уменьшаются, что можно объяснить относительным уменьшением прочности связи оставшегося неспаренного s-электропа с ядром. В целом оказывается, что сумма первых двух потенциалов ионизации у ванадия заметно больше (21,87 В), чем у ниобия и тантала (20,36 20,58 В соответственно), а у последних эти характеристики практически совпадают. Сравнивая последующие потенциалы ионизации, отметим, что /,, /4, уменьшаются в ряду V—Nb—Та. Это приводит и к уменьшению в этом же направлении суммы пяти потенциалов ионизации. Последнее обстоятельство и объясняет, с одной стороны, увеличение стабильности высшей степени окисления при переходе от ванадия к танталу, а с другой стороны, нарастание металлических свойств В степени окисления +5 в том же направлении, что вообще характерно для многих -элементов. Последнее обстоятельство подтверждается и изменеиием электроотрицательности, которая несколько уменьшается при переходе от ванадия к ниобию и танталу. [c.300]

    Первым потенциалом ионизации называется энергия, необходимая для отрыва от изолированного атома в газообразном состоянии электрона, слабее других связанного с ядром. Второй потенциал ионизации — это энергия, необходимая для удаления второго электрона, и т. д. Энергия ионизации в периодической таблице возрастает слева направо для элементов одного периода, поскольку увеличивается заряд ядра (табл. 4). В столбце табл. 5 она уменьшается сверху вниз из-за увеличения расстояния электрона от ядра. Видно также, что энергия удаления электрона возрастает с числом отры- [c.39]

    Наименьший среди других щелочных элементов атомный радиус лития и соответственно наибольший первый потенциал ионизации определяют относительно меньшую его химическую активность в подгруппе. Из всех щелочных элементов только у атома лития валентному электрону предшествует устойчивая электронная оболочка типа гелия (электронная формула атома натрия уже ls 2s 2p 3s ). Она оказывает большое поляризующее действие на другие ионы, атомы и молекулы, но сама весьма мало поляризуется под их влиянием. Этим можно объяснить относительно меньшую термическую устойчивость солей лития в ряду соединений щелочных металлов и отсутствие у лития достаточно устойчивых соединений с комплексными анионами. Характерно, например, что в ряду гидрокарбонатов щелочных металлов МеНСОз не выделено лишь соединение лития оно существует только в растворе. По той же причине наиболее прочны те комплексные соединения лития, в которых он является центральным атомом, например [Li(NH3)J". [c.6]

    В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача этих ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в ультрафиолетовой области к ксенону добавляют другие газы, например водород или пары ртути. Используют импульсные лампы и с другим наполнением кислородом, азотом, аргоном. Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической лампы. Время светового импульса фотолитической лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии, от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотношения сопротивления R, индуктивности L и емкости С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотношение i = 2 /"L/ . Уменьшение времени затухания х достигается снижением индуктивности соединительных проводов, а также сниже1 м емкости и индуктивности конденсатора (t ]/L ). При этом уменьшение [c.280]

    В рядах -элементов орбитальный радиус в пределах каждого периода уменьшается еще более плавно, чем у - и р-элементов. В пределах каждой В-группы, как -и для и р-элементов, наблюдается немонотонное изменение орбитального радиуса увеличение при переходе от 3 - к 4 -элементам и уменьшение от 4 - к 5 -элeмeнтaм. Следствием этого является немонотонное изменение и других характеристик атомов, определяющих их свойства (потенциал ионизации, злектроотрицательность и т.п.). Это явление получило название вторичной периодичности. Для -элементов такая немонотонность объясняется тем, что впервые появляющаяся 3 -оболочка является кайносимметричной и обусловливает мень- [c.234]

    Атомы элементов характеризуются сравнительно небольшим набором физических свойств заряд ядра, атомная масса, орбитальный радиус, потенциал ионизации, сродство к электрону. Для простых веществ, особенно в конденсированном состоянии, набор физических свойств, т.е. существенных признаков, отличающих одно вещество от другого, весьма обширен. В качестве примера можно перечислить классы таких характеристик термодинамические, кристаллохимические, физико-механические, электрофизические, оптические, магнитные и иные свойства. Рассматривая закономерности изменения физических свойств простых веществ, целесообразно ограничиться сравнительно небольшим набором характеристик, которые обусловлены в первую очередь особенностями химической связи (молярные объемы, энта/сьпии атомизации, энергии диссоциации двухатомных молекул, температуры плавления, магнитная восприимчивость). [c.244]

    Для решения вопроса о свойстве катиона, ответственном за гвдрирую-щую активность целиотов, было использовано то обстоятельство [78], что среди катионов 1, II и 111 групп периодической таблицы Д.И. Менделеева можно найти такие, у которых изменяется одна из характеристик при приблизительном постоянстве другой (табл. 1.27). Из таблицы следует, что в ряду катионов К, Na, Li потенциал ионизации элемента изменяется в интервале 4,34-5,39 зВ, т.е. не более чем иа 20%. В то же время величина электростатического потенциала e/R ) в ряду этих катионов )гвеличивается от 0,56 до 2,16, т.е. в 4 раза. С другой стороны, в случае катионов Li, Са , La , наоборот, потенциал ионизации увеличивается в 4 раза, а электростатический потенциал постоянен в пределах 10%, [c.58]

    Нить характеризуется ее работой выхода, т. е. минимальным количеством энергии, необходимой для отрьша электрона от поверхности металла. В конфигурациях с одной нитью испарение и ионизация происходят с одной и той же поверхности. Используя две или три нити, можно разделить ступени испарения и ионизации, поскольку газообразная проба затем перемещается к другой нити и адсорбируется на ее поверхности. Это полезно для элементов, которые испаряются при низких температурах, но требуют высокой температуры для эффективной ионизации (например, Са). Нити изготавливают из тугоплавких элементов, таких, как Та, Ке или У, поскольку их температуры плавления равны 3000°, 3180° и 3400° С соответственно. Отметим, что их работа выхода составляет 4,30, 4,98 и 4,58 эВ соответственно. Работу выхода можно снизить добавлением, например, ТЬ к У. Работа выхода У с добавками ТЬ составляет уже 2,7 эВ. Элементы наносят обычно в ввде нитратов или хлоридов. Эффективность ионизации особенно высока для элементов, первый потенциал ионизации которых меньше 7эВ, таких, как щелочные элементы, щелочноземельные элементы, актинвды и лантаниды. Для элементов с потенциалом ионизации вьш1е 7эВ (например, Си, Рс1, 2п) может быть необходимо добавление реагентов, увеличивающих эффективность ионизации особенно распространен силикагель с добавками или без добавок. Преимуществом этого типа ионизации является то, что образуются только однозарядные ионы, приводящие в итоге к простому спектру. Следует заметить, что с помощью ТИМС наблюдаются не только положительно заряженные, но также и отрицательно заряженные ионы, особенно для неметаллов и при использовании нитей с низкой работой выхода. Примеры отрицательных ионов включают галогены, 8е,8 и Те. Теория положительной термической ионизации гласит, что отно- [c.133]

    От потенциала ионизации во многом зависят восстановительные свойства атомов, характер и прочность об-разумых ими химических связей. Чем меньше ПИ, тем легче атом отдаст электрон не только при электронном ударе, но и при взаимодействии с другими атомами, т. е., выражаясь химическим языком, тем больше его восстановительная способность. При связи с одним и тем же атомом-партнером атом с меньшим значением ПИ легче расстанется с электроном и поэтому у него тенденция к образованию центра положительного электричества или даже катиона будет проявлена больше. Наилучшими восстановительными свойствами обладают щелочные металлы IA подгруппы, начиная с s и кончая Li, а затем идут щелочно-земельные элементы ПА подгруппы, начиная с Ва и кончая Са, и т. д. (рис. 10, табл. 3). Пилообразность кривых внутри периодов может быть объяснена относительной устойчивостью некотрых электронных структур ras , гар , rad , ra< , nf, га/ (см. раздел 4.4). Но, конечно, максимальной устойчивостью обладают структуры инерт-газов Is у Не и у остальных. Потенциалы ионизации /а, /з,..., существенно увеличиваются в этой последовательности, причем особенно резко при ПИ, индекс которых больше номера группы /2 для Li, I3 для Ве, /4 для В и т. д. (эти значения в табл. 3 выделены рамкой). Это говорит о практической невоз- [c.114]

    Шкала электроотрицательностей по Малликену. Первый потенциал ионизации /1 показывает, какую энергию нужно затратить, чтобы оторвать от атома один электрон, а величина сродства к электрону Е является мерой легкости присоединения к атому одного электрона. Можно принять, что чем меньше /] и Ей тем меньше и сродство атома к электрону. Среднее арифметическое из этих величин Р. Малликен назвал степенью электровтрицательности (хм). Этот подход отличается ясностью и простотой, однако имеет один недостаток его ограничение обусловлено тем, что не всегда с высокой надежностью можно определить значение 1. При этом нужно помнить следующий принцип Если атом переводится в ион, то энергетические уровни электронных орбиталей изменяются , причем необходимо знать эти новые уровни энергии вновь образовавшегося иона и внести коррективы в значения Л и Е] соответственно. Малликен получил величины электроотрицательностей для многих элементов (табл. 2.11). Эти значения легко сопоставить с электроотрицательностями (д ), полученными другими способами, путем пересчета д м = 0,336 (л м — 0,615). [c.71]

    Щелочным металлом начинается каждый новый период. По сравнению с другими элементами у Щ. м. самые низкие энергии ионизации, а радиусы атомов и ионов наибольшие. С увеличением радиусов атомов от лития к францию уменьшаются ионизационный потенциал и энергия сродства к электрону следовательно, легкость отдачи электрона увеличивается. Таким образом, восстановительная способность Щ. м. увеличивается сверху вниз. От лития к францию число электронных оболочек возрастает от 2 до 7. Атом лития отличается от остальных Щ. м. тем, что его предвнешний уровень заселен двумя элек- [c.356]

    На основании исследования спектров люминесценции было установлено, что в адсорбированной фазе молекула нафталина связана с поверхностью цеолита вандерваальсовыми силами, в другом эта связь дополняется электростатическим взаимодействием, приводящим к образованию комплексов с переносом заряда. Последний имеет в своей основе донорно-акцептор-ную природу и образуется тем легче, чем меньше потенциал ионизации донора и чем больше сродство к электрону акцептора [84]. Молекула нафталина входит в рассматриваемый комплекс в качестве донора электронов. Акцептором служит какой-то элемент решетки. Сейчас еще трудно однозначно определить этот структурный элемент. [c.161]


Смотреть страницы где упоминается термин Потенциал ионизации других элементов: [c.435]    [c.472]    [c.135]   
Введение в теорию атомных спектров (1963) -- [ c.56 , c.63 , c.67 , c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал ионизации

Потенциалы ионизации молекул и радикалов, содержащих бор, кремний, серу и другие элементы



© 2025 chem21.info Реклама на сайте