Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродные методы определения

    Адсорбционные явления играют очень важную роль в кинетике почти всех электродных процессов. Условия адсорбции растворенных веществ на поверхности электрода во многом определяются зарядом его поверхности, т. е. в первом приближении его потенциалом в приведенной шкале — шкале, основанной на нулевых точках. Поэтому понятен тот интерес, кото )ый проявляется к методам определения нулевых точек. [c.255]


    Скачок потенциала на границе раздела фаз может быть равен нулю только тогда, когда g i, g2 и ga компенсируют друг друга. В настоящее время нет прямых экспериментальных и расчетных методов определения величин отдельных скачков потенциала на границе раздела фаз. Поэтому вопрос об условиях, при которых скачок потенциала обращается в нуль (так называемый абсолютный нуль потенциала), остается пока не разрешенным. Однако для решения электрохимических задач знание отдельных скачков потенциалов не обязательно. Достаточно пользоваться значениями электродных потенциалов, выраженными в условной, например, водородной шкале. [c.476]

    Наряду с экспериментальными методами определения стандартных электродных потенциалов важное место занимает расчетный метод с использованием термодинамических данных, особенно полезный, когда электроды неустойчивы, например щелочные или щелочноземельные металлы в водных растворах их солей или оснований. Расчетный метод основан на том, что потенциал электрода равен э. д. с. электрохимической цепи, составленной из данного и стандартного водородного электрода. Например, для электрода Na+ Na цепи Ыа Ыа+ЦН+ Н2, Р1 соответствует реакция [c.478]

    В методическом отношении потенциометрические методы анализа подразделяют на прямую потенциометрию и потенциометрическое титрование. Методы прямой потенциометрии основаны на применении уравнения Нернста для нахождения активности или концентрации участника электродной реакции по экспериментально измеренной ЭДС цепи или потенциалу электрода. Наибольшее распространение среди прямых потенциометрических методов получил метод определения pH, но создание в последнее время надежно работающих ионоселективных электродов значительно расширило практические возможности прямых методов. Показатель pH измеряют и методом потенциометрического титрования. [c.241]

    Практи ческий интерес представляет нестационарная диффузия к электроду в виде растущей ртутной капли, вытекающей из капилляра. Метод определения зависимости тока от потенциала на капельном ртутном электроде получил название полярографического метода. Этот метод широко применяется и для исследования электродных процессов, и для качественного и количественного анализа растворов. Он был предложен в 1922 г. Я. Гейровским. В дальнейшем этот метод получил очень широкое развитие, появились многочисленные его разновидности. Схема полярографической установки пока-зана на рис. 95. [c.179]


    Метод определения порядка реакции щироко используется при исследовании механизма электродных процессов с участием комплексов металлов. При изучении электродных процессов в комплексных электролитах возникает проблема определения природы частицы, участвующей в электрохимической стадии. Рассмотрим, как по зависимости плотности тока обмена от концентрации свободного лиганда можно определить природу реагирующих частиц для процессов, медленной стадией которых является стадия разряда — ионизации. [c.335]

    Практически важной является нестационарная диффузия к электроду в виде растущей ртутной капли, вытекающей из капилляра. Метод определения зависимости тока от потенциала на капельном ртутном электроде получил название полярографического метода. Этот метод широко применяется и для исследования электродных процессов, и для качественного и количественного анализа растворов. Он был предложен в 1922 г. Я. Гейровским. В дальнейшем этот метод [c.190]

    В данной книге не рассматриваются общие свойства растворов и методы определения коэффициентов активности, а излагаются только те особенности растворов электролитов, которые обусловлены присутствием заряженных частиц. Далее, условия электрохимического равновесия выводятся обобщением соотношений химической термодинамики на системы, в которых помимо прочих интенсивных факторов нужно дополнительно учитывать электрическое поле. Наконец, в качестве основы кинетических закономерностей процесса переноса заряженных частиц через границу раздела фаз используются известные уравнения теории активированного комплекса, в которых анализируется физический смысл энергии активации и концентрации реагирующих веществ в специфических условиях электродной реакции. [c.6]

    Приведенное уравнение связывает ЭДС с константой равновесия реакции в гальваническом элементе. Поскольку электродвижущую силу, как известно, можно рассчитать, используя стандартные электродные потенциалы ( "), мы имеем один из точных методов определения стандартных энергий Гиббса и констант равновесия [c.158]

    Применение методов определения pH в католите и анолите позволяет решить вопрос об условиях торможения электродной реакции, а также о порядке реакции. Это весьма существенно для правильных представлений и выводов о механизме электродных процессов. Например, результаты исследования зависимости перенапряжения водорода на различных катодах от pH раствора позволили В. С. Багоцкому получить ценные данные о механизме этого процесса и природе реагирующих частиц при исследовании кинетики выделения водорода на ртути из растворов, содержащих НС1 и КС1. [c.266]

    Произведение растворимости (ПР) можно рассчитать по нормальным электродным потенциалам [см. уравнение (IX. 78)]. Здесь мы рассмотрим экспериментальный метод определения ПР какой-либо труднорастворимой соли, например, хлорида серебра. [c.571]

    Более общим и надежным методом определения стандартного электродного потенциала следует считать метод экстраполяции с учетом уравнений теории Дебая — Хюккеля. Чтобы обеспечить постоянство качественного состава в исследуемой области концентраций, в растворы гидролизующихся солей вводят сильную кислоту или сильное основание, в растворы комплексных соединений — избыток лиганда и т. д. Ионную силу раствора контролируют путем применения различных поддерживающих электролитов. [c.170]

    Современная методика исследования поляризации в расплавленных солевых системах использует те же приемы, что и в водных электролитах. При этом также применяют и классические и релаксационные методы определения кинетических параметров электродных процессов. [c.321]

    Условия эксплуатации графитированных электродов, являющихся токоподводами дуговых электропечей, исключают развитие поляризационных эффектов, в связи с чем разработана методика и изготовлена установка для определения окис-ляемости электродного графита, позволяющая устранить систематическую погрешность измерения окисляемости, связанную с накоплением зарядов на поверхности графита и тем самым повысить точность определения при анализе качества электродов. Метод определения максимально приближен к условиям эксплуатации. Кроме того, расширен диапазон измерения окисляемости до 2000° С вместо 900° С. [c.29]

    Каковы основные экспериментальные методы определения порядков электродных реакций -  [c.6]

    Температурно-кинетический метод определения эффективной ввергни активации электродного процесса и выявления вида его контроля привлек внимание исследователей простотой реализации. [c.40]

    Н. Е. Хомутовым [589] разработан метод определения стандартных электродных потенциалов, предназначенный для цепей типа электрод первого рода — водородный электрод  [c.69]


    Все предложенные методы определения коэффициента электродной селективности являются приближенными, что связано с применением полуэмпирических уравнений для мембранного потенциала и с использованием при расчетах условных активностей отдельных ионов или просто концентраций. Для систем, содержащих ионы различных зарядов, коэффициенты селективности обычно определяют по уравнению Никольского. [c.715]

    Прямая потенциометрия является наиболее простым методом определения, но обладает рядом недостатков. В частности, она позволяет определять только свободные ионы, требует постоянного контроля за величиной стандартного потенциала и крутизны электродной функции, кроме того, желательно, чтобы стандартные растворы имели фон, близкий по составу фону исследуемой пробы фон же часто либо неизвестен, либо меняется от пробы к пробе, а добавление какого-либо буфера может привести к большим ошибкам в определении особенно низких концентраций из-за присутствия в реактивах следов определяемого вещества или мешающих ионов. [c.724]

    Более простой, но несколько менее точный метод определения числа электронов и подтверждения обратимости электродного процесса предложил Штакельберг [7]. Метод состоит в определении углового коэффициента касательной к полярографической кривой в точке полуволны. [c.117]

    Ускоренный электрохимический метод испытания на точечную коррозию, предложенный Бреннертом и усовершенствованный Г. В. Акимовым и Г. Б. Кларк, состоит в том, что образец коррозионностойкой стали поляризуют анодно от внешнего источника постоянного тока и одновременно измеряют его электродный потенциал (рис. 355). При достижении некоторого значения потенциала (потенциала пробивания) защитная пленка на образце разрушается в одной или нескольких точках, вследствие чего значение электродного потенциала образца уменьшается. Наблюдается хорошее соответствие результатов сравнительных коррозионных испытаний хромистых и хромоникелевых сталей на точечную коррозию с данными, полученными методом определения потенциала пробивания. [c.463]

    Метод Грэй Кинга [35] особенно известен в Англии. Он состоит "в нагреве в кварцевой трубке 20 г тонкоизмельченного угля при скорости 5 град/мин в пределах от 300 до 600 С. Вид твердого нелетучего остатка определяют путем сравнения с серией эталонных коксов. Чрезмерно вспучивающиеся угли испытывают в смеси с различными пропорциями электродного кокса до получения остатка соответствующей формы. Количество добавляемого кокса дает характеристику исследуемого угля, но такой иринции испытаиия напоминает метод определения его спекающей способности. [c.53]

    Анализ основан на зависимости вольт-амперной характеристики гальванического элемента (электрохимической ячейки) от концентрации определяемого компонента в газовой смеси, находящейся в динамическом равновесии с электрохимической системой ячейки и определяющей значение окислительно-восстановн-тельного потенциала раствора электролита и течение электродных процессов. На этой зависимости базируются две группы методов определения концентрации компонентов смесей газов и паров 1) с приложением внешнего поляризующего напряжения к электродам ячейки и 2) без него (с внутренним электролизом). [c.612]

    Рассматриваются основные вопросы аналитической химии — протолитические и редоксиравновесия, равновесия комплексообразования, равновесия между твердой и жидкой фазами. Излагаются основы химической термодинамики и кинетики. Разбираются химические, электрохимические и фотометрические методы определения веществ, точность определений в количественном анализе, маскирование и методы разделения Во 2-е издание (1-е— 1980 г.) включены электродные равновесия и процессы и фотометрия. [c.2]

    Потенциометрический анализ — метод определения концентрации ионов, основанный на измерении электрохимического потенциала индикаторного электрода, погруженного в исследуемый раствор. П-отенциомет-рический метод был разработан еще в конце прошлого столетия, после того как Нернст вывел уравнение, связывающее электродный потенциал с активностью (концентрацией) компонентов обратимой окислительно-восстановительной системы. В разбавленных растворах коэффициенты активности ионов близки к единице, а активность близка к концентрации, поэтому можно пользоваться уравнениями Нернста в концентрационной форме, а именно  [c.454]

    Еленский С. И., Стрельников Г. А., Шляпин Е. Г. Метод определения тенденций показателей производственного травматизма.— В кн. Вопросы технического прогресса в электродной промышленности. Сб. научных трудов, вып. 3. Челябинск, Южно-Уральское книжное изд-во, 1971. [c.27]

    ИОДОМЕТРИЯ, титриметрический метод определения восстановителей, основанный на реакции 1 -I- 2е 31- (стандартный электродный потенциал +0,536В). Титрант — р-р Ь в водном р-ре KI. При обратном титровании избыток 1 титруют стандартным р-ром Na2S2 03. Конечную точку устанавливают по исчезновению или появлению окраски иода (иногда — в слое орг. р-рителя) или с помощью индикатора — крахмала. Часто И. называют метод определения ионов Н+ по кол-ву иода, выделивщегося в р-ции Ю -I--I- 51 + 6Н+ ii ЗЬ + ЗН2О. Косвенная И.— метод определения окислителей по кол-ву иода, образовавшегося при их взаимод. с KI. В обоих случаях выделившийся Ь от- [c.224]

    Дж/(моль-К). Степень окисл. -НЗи -f-4. Во влажном воздухе окисляется (при 160—180 °С воспламеняется), при комнатной т-ре реаг. с водой, НС1, HNO3, H2SO4, при нагрев.— с галогенами, N2, С, S. Получ. кальциетермич. восст. трифторида электролиз расплава хлорида. Се — компопепт мишметалла и ферроцерия геттер легирующая добавка в алюминиевых и магниевых сплавах. Л. А. Доломанов. ЦЕРИМЕТРИЯ, титриметрический метод определения восстановителей, основанный на р-ции Се + -Н е Се + (стандартный электродный потенциал 1,3—1,7 В). Титрант — р-р соли e(IV), например  [c.676]

    Значительно более высокая селективность достигается в случае проведения электролиза при контролируемом потенциале рабочего электрода. Обычно потенциал рабочего электрода измеряют относительно третьего электрода с известным и постоянным потенциалом, т. е. электрода сравнения (насыщенного каломельного или хлорсеребряного). Имеются по-тенциостаты, поддерживающие постоянный потенциал катода на протяжении всего электролиза. При этом можно раздельно количественно вьщелять компоненты смеси со стандартными электродными потенциалами, различающимися всего на неск. десятых долей вольта. Напр., последовательно определяют Си, В1, РЬ и 8п. Первые три металла вьщеляют из нейтрального тартратного р-ра Си - при 0,2 В В - при 0,4 В РЬ - при 0,6 В (взвешивая электрод после осаждения каждого металла). Оставшийся р-р подкисляют и осаждают 8п при -0,65 В. Разработаны методы определения Си в присут. Bi, 8Ь, РЬ, 8п, №, Сс1, гп РЬ - в присуг. Сс1, Зп, №, 2п, Мп, А1, Ре. [c.423]

    Потенциометрия представляет собой метод определения концентраций веществ, а также различных физико-химических величин, основанный на измерении потенциалов электродов. Измерение электродных потенциалов и нахождение зависимости между ними и концентрацией (активностью) определяемых компонентов позволяет установить не только концентрацию (активность) ионов, но и ряд других характеристик константы диссоциации слабых электролитов и константы устойчивости комплексных соединений, произведения растворимости малорастворимых осадков, стандартные и формальные электродные потенциалы, окислительно-вос-становительные потенциалы, стехиометрические коэффициенты в химических реакциях, число электронов, участвующих в потенциа-лопределяющей стадии и т.д. По величине потенциала индикаторного электрода можно оценить также глубину протекания и направление окислительно-восстановительных реакций между реагирующими веществами. [c.171]

    Метод определения константы скорости kl для квазиобратимых электродных процессов подробно разобран в работе Мацуды и Аябе [147]. Полученные ими выражения для разряда комплексов довольно сложны. Корыта 1148] предложил более простой вывод уравнений, который приводится ниже. [c.188]


Смотреть страницы где упоминается термин Электродные методы определения: [c.98]    [c.109]    [c.93]    [c.191]    [c.657]    [c.670]    [c.135]    [c.60]    [c.87]    [c.98]    [c.142]    [c.201]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.325 , c.326 ]

Теоретическая неорганическая химия (1969) -- [ c.307 , c.308 ]

Теоретическая неорганическая химия (1971) -- [ c.295 , c.297 ]

Теоретическая неорганическая химия (1969) -- [ c.307 , c.308 ]

Теоретическая неорганическая химия (1971) -- [ c.295 , c.297 ]




ПОИСК





Смотрите так же термины и статьи:

Критерии для определения лимитирующей стадии электродного процесса в методе вольтамперометрии с линейной разверткой потенциала

Определение кинетических параметров электродного процесса методом вращающегося диска

Определение кинетических параметров электродного процесса методом полярографии

Определение кинетических параметров электродного процесса хронопотенциометрическим методом

Определение содержания хинонов методом циклической вольтамперометрии. Оценка обратимости электродной реакции

Температурно-кинетический метод определения природы электродной поляризации

Электродная селективность жидких мембран и методы определения коэффициентов электродной селективности



© 2024 chem21.info Реклама на сайте