Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Построение кинетических моделей стационарных реакций

    Изучение динамических режимов химического процесса включает изучение вопросов и динамики химических реакций, в том числе нестационарной кинетики, т.е. скорости реакции при любых изменениях условий протекания процесса (переходные режимы, случайные или принудительные возмущения в условиях процесса). Встречается способ построения динамической модели, заключающийся. в том, что к уравнению, описывающему стационарный режим, дописывают инерционный член, характеризующий накопление вещества и тепла. В этом случае общая структура явлений сложного процесса сохраняется. Но в многостадийной каталитической реакции в переходном режиме меняются также концентрации промежуточных веществ. Тогда нестационарная кинетическая модель будет отличаться от стационарной, поскольку последняя построена на основе теории стационарных скоростей реакции. Покажем это на простейшем примере [317] гетерогенно-каталитической реакции [c.240]


    М. И. Темкин использовал метод стационарных концентраций для построения кинетической модели реакции на неоднородной поверхности катализатора. В этом случае некоторая совокупность активных центров с18, имеющих одинаковые энергетические характеристики, отличается от других теплотой сорбции, изменение которой можно считать линейным  [c.178]

    У.З. ПОСТРОЕНИЕ КИНЕТИЧЕСКИХ МОДЕЛЕЙ СТАЦИОНАРНЫХ РЕАКЦИЙ [c.106]

    Спивак С. И. Методы построения кинетических моделей каталитических стационарных реакций. Диссертация. Ин-т Катализа СО АН СССР, Новосибирск, 1976. [c.292]

    Теория сложных реакций, базирующаяся на принципе стационарности, была развита в работах Темкина [73] и Хориути [81] и подробно рассмотрена в монографии [31]. Ниже будут кратко изложены основы этой теории в приближении однородной каталитической поверхности. Мы еще вернемся к ней в гл. V, посвященной построению кинетических моделей гетерогенно-каталитических реакций. [c.50]

    Современные представления о механизме и кинетике гетерогенно-каталитических реакций нашли наиболее полное и последовательное выражение в теории стационарных реакций [73]. Математический аппарат теории стационарных реакций позволяет формализовать конструирование механизма реакции и ее кинетической модели н широко использовать для этой цели ЭВМ [65]. На основе гипотезы об элементарных реакциях, протекающих на поверхности катализатора, и об энергетических свойствах поверхности катализатора (энергетически однородная, неоднородная и характер неоднородности) с помощью этой теории можно построить кинетическую модель, включающую в общем случае систему стехиометрических уравнений (базис стехиометрических уравнений) и уравнения, определяющие скорости изменения концентраций компонентов реакционной смеси в зависимости от температуры и состава реакционной смеси. Схему построения кинетической модели можно представить в следующем виде. [c.106]

    В предыдущих главах были рассмотрены способы вывода кинетических уравнений реакций, основанные на их механизме и применении метода стационарных концентраций Боденштейна. В данной главе излагаются общие методы преобразования этих уравнений с учетом материального баланса системы, а также некоторые другие методы построения кинетических моделей процесса, иллюстрируемые главным образом на примерах кинетики гомогенного катализа. [c.138]


    Когда адсорбция или десорбция реагентов и разные стадии химической реакции на поверхности катализатора сравнимы по скорости, для построения кинетических моделей часто используют метод стационарных поверхностных концентраций. Возьмем для примера двухстадийную обратимую реакцию к к А + ( ) (X) -1- 7 (X) + V ( ) -f В [c.177]

    Значительное распространение получил способ построения кинетических моделей по методу Хоугена — Уотсона, являющийся разновидностью метода стационарных концентраций. С его помощью удается оценить роль адсорбции и десорбции при достаточно быстрых реакциях на поверхности. Эти исследователи использовали при выводе уравнений свои обозначения различных коэффициентов и концентраций, но мы применим те, которые введены выше. [c.179]

    Построение математических моделей ж вывод (если такое возможно) выражений для наблюдаемых функций осуществляются на основе теории сложных стационарных реакций [2, 3]. Эта теория позволяет построить четкий алгоритм вычисления скоростей сложной многостадийной реакции. Она является основой для развитого в данной работе способа алгоритмизации кинетических расчетов при исследовании стационарных режимов гетерогенных каталитических реакций (ГКР). [c.39]

    В химической кинетике компьютерная алгебра только начинает применяться можно привести лишь небольшое число работ, где эти методы использовались при выводе стационарных кинетических уравнений для линейных механизмов реакций [32—34], при построении характеристического уравнения по графу реакции и получении критериев сложного кинетического поведения [35], анализе идентифицируемости кинетических моделей [36]. Наш опыт пока- [c.252]

    При построении кинетических моделей сложных стационарных и квазистационарных реакций с использованием теории линейных направленных графов вершинам и ребрам графа дадим названия, приписав по аналогии с линейными графами сигналов [60] каждой вершине I вместо узлового сигнала Ж значение концентрации промежуточного продукта X,- (t = 1, 2,. . . ), а каждому ребру (г, /) — вместо передачи сигнала в направлении i у значение коэффициента названного Баландиным [3] кинетическим и равного произведению соответствуюш,ей константы скорости кц на концентрацию исходного веш,ества или конечного продукта, например, цуц = Ас, и>11 = и т. д. При этом отсутствие промежуточного продукта в каких-либо стадиях восполним нуль-веш еством [98] с концентрацией, равной 1 это же значение концентрации нуль-веш,ества припишем и вершине с I = О, т. е. = 1. Ребра обратимых стадий снабдим двумя стрелками, соответствующими направлениям стадий. Двунаправленное ребро г / имеет в указанных направлениях два кинетических коэффициента и [c.101]

    Однако, несмотря на имеющиеся в этой области достижения, задача установления механизма протекания реакции и построения соответствующей адекватной математической модели (так называемая обратная кинетическая задача) все еще не получила достаточного разрешения. Следует отметить при этом, что в настоящее время практически разработаны методы исследования механизма реакций лишь для стационарных условий их протекания и предельных состояний лимитирования сложной реакции отдельными стадиями И в этом случае все же остается нерешенньш целый ряд задач, к числу которых можно отнести в первую очередь такие проблемы, как отыскание предварительных оценок искомых кинетических констант, разработку машинных методов расчета с быстрой сходимостью, доказательство правильности и единственности найденных значений констант, доказательство адекватности формы кинетической модели, выбор наиболее адекватной формы модели среди нескольких вероятных конкурирующих моделей, стратегия направленного конструирования адекватной модели в случае неадекватности имеющихся моделей. [c.212]

    Таким образом, при изучении гидрогеназы из данных стацио-, нарной кинетики яолучена интересная информация о механизме действия биокатализатора. Важно подчеркнуть этапы исследования экспериментальное изучение зависимости стационарной скорости реакции от концентрации субстратов и pH, построение, анализ и дискриминация кинетических моделей, определение численных значений констант скоростей и равновесий, построение энергетического профиля реакции и молекулярной модели активации водорода железо-серным кластером. [c.51]

    При анализе кинетической модели окисления СО на платине (глава 2) дан эффективный алгоритм построения области множественности стационарных состояний в пространстве парциальных давлений и температуры. При анализе переходных режимов в этой системе выявлены особенности времен релаксации, связанных с бифуркациями стационарных состояний при варьировании параметров, а также при изменении начальных условий. Для реальных значений параметров и констант модели (констант скорости стадий и коэффициентов диффузии) даны оценки размеров возможных макрокластеров на поверхности катализатора. Вскрыт механизм диффузионного сужения наблюдаемого гистерезиса стационарной скорости реакции (глава 3). Полученные результаты могут быть полезны при подготовке катализатора дожигания СО и при оценке размеров локальных возмущений, которые не отразятся на его стабильной работе [c.17]


    Нестапионарность катализатора. Под воздействием изменяющегося состава реакционной среды катализатор не остается неизменным. Помимо химических стадий взаимодействия реагирующих веществ имеют место физические процессы на поверхности (перенос реагирующих веществ между различными центрами, поверхностная диффузия адсорбированных атомов и молекул, растворение и диффузня в твердом теле веществ — участников реакции, структурные и фазовые превращения) [30, 31, 32]. Не-стационарность состава катализатора весьма своеобразно ирояв-ляется в кипящем слое, где частицы непрерывно перемещаются в поле переменных концеитрации. При этом каждая частица в отдельности непрерывно изменяет свои каталитические свойства, никогда не приходя в равновесне с окружающей реакционной средой. Хотя усредненные за достаточно большой период времени свойства катализатора остаются неизменными и реактор в целом работает стационарно, его выходные характеристики могут существенно отличаться от рассчитанных с исиользованием стационарных кинетических уравнений. Для построения нестационарной кинетики каталитического процесса необходимо выявить параметры состояния катализатора, определяющие скорость реакции, закономерности их изменения под воздействием реакционной смеси, разработать методы измерения пли расчета этих параметров в ходе нестационарного эксперимента. Не меньшие трудности возникают при разработке и решении математической модели, отражающей изменение параметров состояния по глубине пленки активной массы в зерне, случайно перемещающемся по высоте слоя. [c.62]

    Использование метода стационарных концентраций позволяет заменить дифференциальные уравнения для радикальных нродуктов простыми алгебраическими соотношениями и построить приближенное решение сложной системы кинетических уравнений. Поэтому исследования в условиях стационарного облучения широко используются с целью установления конечного результата радиационно-химического процесса и построения на этой основе количественной схемы его протекания, отображающей соотношение скоростей различных простых реакций. Однако построение адекватной математической модели требует знания природы и кинетических характеристик активных короткоживу-щих частиц и направлепности процессов взаимодействия, в которых они могут участвовать. Часто приближенное представление о них можно получить, исходя из общих соо-бражений и данных по кинетике радиационно-химических превращений. [c.44]


Библиография для Построение кинетических моделей стационарных реакций: [c.156]   
Смотреть страницы где упоминается термин Построение кинетических моделей стационарных реакций: [c.286]    [c.22]    [c.113]   
Смотреть главы в:

Гетерогенный катализ физико-химические основы -> Построение кинетических моделей стационарных реакций




ПОИСК





Смотрите так же термины и статьи:

Модели построение

Модель кинетическая

Построение кинетических моделей

Реакции кинетическая

Реакции модели



© 2025 chem21.info Реклама на сайте