Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Исследование механизма реакции изотопным методом

    Исследованию механизмов гетерогенно-каталитиче-ских преврашений пентадиена-1,3 посвящена работа Г. В. Исагулянца, М.. И. Розенгарта и сотр. [161]. Ими найдена группа гетерогенных катализаторов дегидрирующего типа, на которых при 630°С при разбавлении пентадиена-1,3 парами воды образуется до 9—12% (в расчете на исходный пиперилен) пятичленных циклических продуктов (циклопентен и циклопентадиен). Используя кинетический изотопный метод, авторы пришли к заключению, что в условиях импульсного режима при малых временах контакта скорость образования циклопентадиена прямой дегидроциклизацией пентадиена-1,3 в несколько раз больше, чем через промежуточный циклопентен. Полагают, что вторая стадия циклизации (после образования пентадиенильного радикала) легко осуществляется по типу электроциклических реакций, описанных в работе [162], возможно даже без участия катализатора  [c.246]


    Механизм отравления Pt-катализатора в ходе превращений 3-метилпентана исследован с помощью изотопных методов [117]. Показано, что в ходе протекания реакций Сз-дегидроциклизации и изомеризации происходит необратимое удерживание части молекул углеводорода на катализаторе, следствием чего является селективное отравление активной поверхности катализатора. Предполагают, что реакции Сз-дегидроциклизации и изомеризации алканов протекают на участках поверхности Pt-черни, представляющих собой определенную геометрическую комбинацию атомов металла. При этом из участия в реакциях дегидроциклизации — изомеризации выводится весь активный центр, если этому предшествует хотя бы частичное блокирование атомов в ансамбле. В то же время реакция дегидрирования может успешно протекать на оставшейся незанятой части ансамбля. В соответствии с этим на рис. 42 изображены возможная схема хемосорбции 3-метилпентана при его Сз-дегидроциклизации и схема хемосорбции метилциклопентана при гидрогенолизе на грани Pt (111) [118]. Таким образом становится очевидным определенное сходство в строении промежуточных комплексов реакций Сз-дегидроциклизации алканов, гидрогенолиза циклопентанов и изомеризации алканов [63, 82, 101, 118]. [c.224]

    В интересном цикле работ С. Л. Кипермана с сотр. [103—106] проведено комплексное исследование кинетики и механизма гидрирования бензола и его ближайших гомологов с применением кинетических, изотопных, адсорбционных и расчетных методов. Исследование кинетики гидрирования толуола в области обратимости процесса показало, что скорость реакции проходит через температурный максимум и характеризуется температурным коэффициентом, меньшим единицы. При переходе от одного углеводорода к другому скорость гидрирования на М1-катализаторе изменяется в ряду бензол > этилбензол > толуол > л-ксилол л-кси-лол>мезитилен но закономерных изменений скоростей изотопного обмена как в ароматическом кольце, так и в алкильных заместителях не наблюдается. Полученные данные указывают, по мнению авторов [106], на различие механизмов реакций гидрирования и Э—Н-обмена. [c.56]

    Исследование механизма реакции изотопным методом [c.64]

    При исследовании механизма реакции электрофильного замещения применялся изотопный метод [159]. Оказалось, что соединения, меченные дейтерием и тритием, замещаются с такой же скоростью, как и водородсодержащие аналоги, т. е. заметного изотопного кинетического эффекта для большинства реакций не наблюдается. Учитывая, что энергия разрыва связей углерод — дейтерий и углерод — третий выше, чем энергия связи С—Н, можно заключить, что последняя стадия реакций электрофильного замещения — отрыв протона — не должна быть лимитирующей. Поскольку образование л-комплексов — быстрый процесс, то в качестве лимитирующей стадии остается изомеризация я-комплекса в а-комплекс. [c.238]


    Этот обмен можно наблюдать, если свободные лиганды предварительно помечены каким-либо образом (например, изотопно). Скорость обмена определяют по выравниванию изотопного состава свободного и связанного лиганда. Если метод меченых атомов неприменим, используют ЯМР, а также специальные методы исследования быстрых реакций, например метод температурного скачка. Обмен лигандами — это механизм, через который осуществляется динамическое равновесие иона со средой. Чем выше скорость обмена лигандами со средой, тем выше и скорость реакции замещения лиганда. [c.37]

    Научные исследования посвящены преимущественно теоретическим вопросам химии, распространению методов квантовой механики на изучение строения молекул. С целью определения строения молекул исследовал дипольные моменты (1930—1940-е), колебательные спектры (1940—1950-е), электронный парамагнитный резонанс (1950—1960), Применил изотопные методы для изучения механизма реакций и методы диэлектрической поляризации для изучения межмолекулярного взаимодействия. Совместно с Е. А. Шиловым ввел представления об образовании циклических (четырех- и щестичленных) [c.480]

    При исследовании механизма реакций, в частности, при оценке возможности образования тех или иных промежуточных продуктов большую помощь оказывает изотопно-кинетический метод иссле- [c.233]

    Исследование механизма химических реакций изотопными методами. [c.511]

    Особенно плодотворно изотопы применяются для исследования обмена веществ. Изучаемое вещество метят (поэтому метод получил название метод меченых атомов ), вводя в него радиоактивный изотоп меченое вещество вводят в организм. После его ассимиляции исследуют присутствие меченых атомов в различных химических фракциях в организме. Концентрация вводимого в организм радиоактивного изотопа должна быть небольшой, чтобы не нарушался обмен веществ, но такой, при которой, несмотря на разведение, изотоп мог бы быть обнаружен во всех выделяемых фракциях. Например, применение СОг с меченым углеродом позволило показать широкое участие двуокиси углерода в реакциях метаболизма бактерий и тканей живого организма, расширить наши представления о механизме фотосинтеза. Изотопный метод применяется в биохимии для количественного определения аминокислот в гидролизатах белков, содержания калия, натрия и других элементов в крови, для определения общего количества воды в живом организме, объема эритроцитов и плазмы в кровотоке и т. д. [c.12]

    В связи с проводимыми нами работами по исследованию механизма реакций замещения у углеродного атома па примере ртутноорганических соединений [1], мы предприняли изучение сравнительной реакционной способности связей С — в различных металлоорганических соединениях методом изотопного обмена. [c.29]

    Эти эффекты, особенно если они велики, затрудняют применение метода меченых атомов, поскольку упрощенные рассуждения, приведенные в разделе Б, строго говоря, теряют силу. С другой стороны, влияние изотопного замещения на скорость реакции должно зависеть от особенностей механизма и, следовательно, при наличии удовлетворительной теории этого явления давать возможность открывать новые пути исследования механизмов реакций. [c.210]

    Проводившиеся с середины 30-х годов параллельные исследования механизмов реакций с применением, наряду с другими методами, изотопного обмена, показали, что хемосорбированные поверхностные комплексы, по-видимому, включают молекулы или осколки молекул (радикалы, ионы), часто встречающиеся в химии. Это открыло путь для классификации твердых тел по их хемосорбционным и каталитическим свойствам и для установления природы связи на поверхности. [c.40]

    Изотопно-кинетический метод исследования механизмов химических реакций. Изотопно-кинетический метод, идея, обоснование и разработка которого принадлежат советскому ученому М. Б. Нейману, позволяет определять природу и относительную концентрацию промежуточных соединений, образующихся при реакции, а также кинетические характеристики основной и промежуточной реакций. [c.152]

    На основании многочисленных исследований механизма и кинетики (с использованием кинетических, адсорбционных, изотопных и других методов) установлено, что в процессе ПКК углеводородов протекают 2 типа гомолитических реакций через хемосорбцию реактантов на поверхности катализатора  [c.506]

    Реакции обмена. Общие положения (129). Кинетика реакций обмена (132). Механизмы реакций обмена (133). Закономерности обмена некоторых элементов (135). Исследование строения и равноценности связей в химических соединениях (139). Применение метода меченых атомов для исследования механизмов химических реакций (141). Изотопно-кинетический метод исследования механизмов химических реакций (152). Глава 10. Применение радиоактивных изотопов в аналитической [c.239]


    В настоящее время механизм сложных процессов можно исследовать более совершенным методом — изотопным. Метод меченых атомов в сочетании с исследованиями кинетики процесса позволяет установить генетические соотношения отдельных продуктов реакции. Вводя радиоактивный углерод в молекулу углеводорода или в предполагаемые промежуточные продукты, можно но распределению радиоактивности в продуктах реакции установить их происхождение и скорости частных реакций в сложном процессе. [c.64]

    Однако по данным этих авторов скорость восстановления катализатора в 8 раз больше скорости его окисления. Реакция окисления СО протекает с одинаковой скоростью на двух образцах МпО 2 (один из них предварительно обработан кислородом), что указывает, по мнению авторов, на несостоятельность теории Бентона. Использование метода меченых атомов позволяет проверить характер участия кислорода в процессе. Восстановительно-окислительный механизм реакций зависит от подвижности кислорода в решетке. Исследование изотопного кислородного обмена позволяет выяснить способность кислорода к перемещению по решетке окислов металлов (см. стр. 41). [c.94]

    Для каждой конкретной реакции могут быть свои подходы к выяснению ее механизма. Для получения надежных сведений о механизме реакции желательны всесторонние исследования, с сочетанием кинетических, адсорбционных, изотопных и других физических методов. [c.163]

    Методами ЯМР измеряют среднее время жизни Тд некоторой отдельной молекулярной разновидности или конфигурации А,, откуда находят константу скорости первого порядка Ад == т а. Измерения проводят на системах, находящихся в состоянии химического равновесия. Метод ЯМР удобен, например, для исследования реакций обмена. Однако в этом случае не смещают равновесия, как в случае релаксационных методов, описанных в гл. 4 и 5. Метод ЯМР, следовательно, особенно полезен при исследовании симметричного обмена им можно исследовать реакции, слишком быстрые для изотопных методов. Поскольку спектр ЯМР позволяет непосредственно идентифицировать атомы, участвующие в обмене, в некоторых случаях можно получить очень подробную информацию о механизме, какую нельзя получить ни одним другим методом, например о роли воды в реакциях аминов (стр. 245). Часто возможна перекрестная проверка так, для растворов амина можно сравнивать несколько сигналов Щ, а для воды — линии [c.239]

    Процессы изотопного обмена имеют очень важное значение для решения многих химических, биологических и физических проблем. Особый интерес они представляют для радиохимии и изотопных методов исследования. Детальное изучение процессов изотопного обмена — одно из важнейших условий понимания природы химических реакций, индуцированных ядерными превращениями, разработки методов обогащения радиоактивных изотопов и разделения ядерных изомеров. Только с учетом количественных характеристик реакций изотопного обмена можно правильно определять выход продуктов ядерных реакций, а также получать правильные результаты активационного анализа и анализа методом изотопного разбавления. Процессы изотопного обмена лежат в основе установления природы химических связей, их равноценности в молекуле, а также методов получения меченых соединений. Особое значение эти процессы имеют для изучения механизма реакций. [c.10]

    При исследовании механизма реакции электрофильного замещения шведский химик Л. Меландер применил изотопный метод. Оказалось, что соединения, меченные дейтерием и тритием, замещаются с такой же скоростью, что и водородсодер-жащие аналоги, т. е. заметного изотопного кинетического эффекта для большинства реакций (за исключением реакции сульфирования) не наблюдается. Учитывая, что энергия разрыва связей углерод — дейтерий и углерод — тритий выше, чем энергия связи С—Н, можно заключить,. что последняя стадия реакции электрофильного замещения — отрыв протона —не должна быть лимитирующей. Следовательно, относительно медленной, лимитирующей стадией является образование промежуточных соединений. Известно, что образование я-комплексов — быстрый. процесс, значит, панболес медленная стадия — изомеризация я-комплекса и а-комилекс. Это подтверждается, например, наличием корреляции между скоростями реакции галогенирования гомологов бензола и устойчипостью а-комплексов, в то время как подобная корреляция с устойчивостью л-комплексов отсутствует. [c.248]

    Исследованию механизма гидрирования сероорганических соединений на различных катализаторах посвящено много работ. Процесс гидрирования достаточно сложен. Предполагается, что он протекает через ряд промежуточных стадий с образованием побочных продуктов. Авторы [85], исследовавшие гидрирование сульфидов и дисульфидов в синтез-газе на катализаторах — окислах Ре, N1, Со, Мп, С(1, Сг, Мо, V, А1, Мд, показали, что первоначально происходит гидрирование до меркаптана, который затем превращается Б сероводород. В работе [86] исследовано гидрирование метилмеркаптана и тиофена над алюмокобальтмолибденовым катализатором в интервале температур 200—260 °С. Показано, что реакция гидрирования метилмеркаптана протекает в двух направлениях 1) гидрирование с образованием метана и сероводорода, 2) диспро-порционирование с образованием диметилсульфида и сероводорода. Максимальная конверсия в метан получена над катализатором с соотношением атомов кобальта и молибдена 1 3, конверсия на таком катализаторе в диметилсульфид минимальна. Тиофен разлагается при более высокой температуре, образуя бутан, бутеиы и серЪводород. Методом изотопного обмена [87] над МоЗг и 3г при гидрировании этилмеркаптана было установлено, что помимо [c.306]

    Широко применяют оптические методы спектроскопию, спек-трофотометрию, измерение показателя преломления, для оптически активных веществ — полярометрический метод. При изучении реакций в растворах электролитов пользуются методом электропроводности, при изучении изотопного обмена и механизма реакции применяют метод меченых атомов. Для исследования быстрых реакций применяют метод измерения скорости распространения и коэффициента поглощения звука и в особенности ультразвука. При изучении скорости рекомбинации атомов используют метод раздельного калориметрирования (А. А. Ковальский, 1946). В ряде случаев, как, например, изучение быстрых реакций или рекомбинации атомов, химико-аналитические методы вообще неприменимы. [c.18]

    Для современного периода развития органической химии весьма характерен значительный рост интереса к механизмам реакций. В это ] а-правление развития органической химии метод меченых атомов внес и продолжает вносить свою лепту. Обладая обширными сведениями о строо-нии органических веществ и умением синтезировать весьма сложные н< > своей структуре молекулы, современная органическая химия располагает далеко не достаточными сведениями о механизме реакций. Огран)]-ченпость экспериментальных методов, пригодных для изучения этой проб-.немы, заставляет искать новые методы для исследования механизмов химических реакций. Не вызывает сомнений, что одной из относящихся сюда задач является экспериментальное изучение свойств различных по своо11 природе частиц, образующихся в промежуточных стадиях химических реакций, и разработка на этой основе способов распознавания этих промежуточных частиц в ходе реакций. Можно надеяться, что подобная методика окажется способной содействовать исследованию механизмов реакций. Недавно В. В. Воеводским [6] и сотр. была сделана интересная попытка использовать реакцию изотопного обмена с молекулярным водоро- [c.14]

    Изучение механизма реакции можно начать с измерения скоростей реакций смесей различного состава при разных температурах в дифференциальном реакторе, позволяющем контролировать тепло- и массоперенос. Полезны также изотопные метки и кинетические изотопные эксперименты. Такое исследование может дать достаточно ясное представление о важнейших стадиях реакции, например может позволить определить лимитирующую стадию. Информация о лимитирующей стадии может быть полезной при попытках повысить активность селективного, но относительно мало активного катализатора. Однако глубокое понимание механизма гетерогенных каталитических реакций достигается очень редко. Но благодаря успехам последних лет в приборостроении сегодня имеется больше оснований надеяться на достижение этой цели, чем 10 лет назад. Некоторые детали механизма можно понять, если сочетать тщательные кинетические исследования с подробным описанием катализатора методами хемосорбции, температурно-программированноп десорбции (ТПД), спектроскопических исследований поверхностного слоя, которые позволяют судить и о состоянии поверхно-стп катализатора, и о промежуточных соединениях, образующихся на ней в ходе данной реакции. [c.12]

    Такой механизм действия ускорителей подтверждается химическим анализом продуктов вулканизации, термомеханическими методами исследования вулканизационных структур, а также осуществлением реакций изотопного обмена как между ускорителями вулканизации и серой так и между вулканизатами каучука и соответствующими им ускорителями, содержащими 5 в дисульфидной группе . [c.144]

    При исследовании механизма каталитического гидрирования олефинов [2] цис-бутен-2, нзобутилен и этилен в смеси с большим избытком водорода-Нг пропускали над промышленным никелевым катализатором, нанесенным на кизельгур. В случае 1 йс-бутена-2 продукт реакции, полученный при —78°, содержал все изотопные изомеры от С4Н10 до 4HI0 с практически равновероятным распределением атомов водорода-Н . Сходные результаты получены с изобутиленом и этиленом. Эти данные показывают, что при получении индивидуальных изомеров дейтерированных насыщенных углеводородов метод каталитического гидрирования имеет весьма ограниченное применение. [c.230]

    Уникальными возможностями для исследования механизма деструкции твердых угольных объектов при ожижении предоставляют методы масс-спектрометрии в сочетании с изотопным обогащением растворителя или реагента, воздействующих на уголь. Так, применение обогащенного дейтерием тетралина, используемого в качестве растворителя в процессе гидрогенизации, позволило количественно охарактеризовать процесс водородного обмена между растворителем и компонентами угольного вещества, установить характер инициирования этих реакций, положения в молекулах угля и растворителя [67], предпочтительно затрагиваемые в процессе. [c.78]

    Метод меченых атомов нашел применение внaчaJ[e для изучения по-авижности или реакционной способности различных атомов в молекуле дан-1Юго соединения или в молекулах различных соединений, проявляющейся, в частности, в реакциях изотопного обмена. Первые исследования этих реакций были осуществлены Хевеши и Панетом [756], изучавших обмен изотопов естественно-радиоактивных элементов. Однако систематические исследования реакций изотопного обмена начались с открытием дейтерия и с получением искусственно-радиоактивных и стабильных изотопов различных других элементов. Метод меченых атомов оказался также весьма эффективным методом изучения механизма химических реакций других классов. [c.54]

    Методы изотопных меченых атомов могут дать много дополнительных сведений относительно тонких деталей механизмов реакций. В настоящее время эти методы настолько хорошо разработаны, что ими можно пользоваться, как обычным (и в то же время очень гибким) методом исследования. Хорошим введением в методы работы с радиоизотопами является вышедшая недавно книга Фейрса и Паркса [88] имеется еще рядболее подробных изданий [59, 92]. Помимо кислорода и азота, имеются еще подходящие радиоизотопы всех элементов, которые могут встретиться в комплексах, и, поскольку методы их обнаружения проще, во многих исследованиях эти радиоизотопы являются предпочтительными. Единственным исключением является водород, так как использование трития не дает явных преимуществ перед дейтерием. [c.88]

    Изотопные методы исследования оказывают весьма существ венную помощь при рещении некоторых теоретических проблем катализа исследование механизма каталитических реакций, изучение природы активной поверхности катализаторов и влияния микродобавок на каталитическую активность, выяснение характера участия катализатора в процессе катализа и т. д. [314—326]. Однако до последнего времени применение метода радиоактивных индикаторов в этой, области не получило должного развития. По< этому ниже будут рассмотрены лищь некоторые примеры исполь зования радиоактивных изотопов для рещения вопросов, связанных с проблемами катализа. [c.171]

    Довольно часто реакции, протекающие по свободнорадикаль ному механизму, сопровождаются изомеризацией первично обра зующихся радикалов. Изучение подобных процессов становится возможным лишь при применении изотопных методов исследования 1438, 439]. [c.233]


Смотреть страницы где упоминается термин Исследование механизма реакции изотопным методом: [c.152]    [c.189]    [c.189]    [c.275]    [c.511]    [c.243]    [c.118]    [c.244]    [c.144]    [c.58]    [c.114]    [c.105]   
Смотреть главы в:

Гетерогенное каталитическое окисление углеводородов -> Исследование механизма реакции изотопным методом

Гетерогенное каталитическое окисление углеводородов Изд.2 -> Исследование механизма реакции изотопным методом




ПОИСК





Смотрите так же термины и статьи:

Изотопные реакции

Метод механизм

Методы исследования механизмов ферментативных реакций Определение констант скоростей и констант равновесия методами стационарной кинетики и изотопного равновесия

Реакция исследование



© 2025 chem21.info Реклама на сайте