Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидродинамические основы процессов массопередачи

    Гидродинамические основы процессов массопередачи изложены в книге [c.147]

    Во второй части книги, посвященной гидродинамическим основам процессов массопередачи, значительно расширен раздел гидродина- [c.3]

    ГИДРОДИНАМИЧЕСКИЕ ОСНОВЫ ПРОЦЕССОВ МАССОПЕРЕДАЧИ [c.86]

    МИКИ двухфазных систем. Дано теоретическое обоснование основной количественной характеристике двухфазной системы — фактору гидродинамического состояния двухфазной системы. Введено математическое описание структуры потоков, возникающих в промышленных аппаратах, как основы построения математических моделей процессов массопередачи. Даны количественные оценки неравномерности распределения элементов потока по времени пребывания в аппаратах, а также расчет параметров математических моделей структуры потоков. [c.4]


    При математическом моделировании процессов массопередачи широко используется блочный принцип, когда модель формируется из отдельных ее составляющих (см. рис. 1-2). Имея информацию о равновесных данных и составив материальный и тепловой балансы процесса, можно изучить гидродинамическую модель процесса как основу математического описания. Затем исследуется кинетика процесса массопередачи с соблюдением гидродинамических условий найденной модели и составляется математическое описание этих процессов с учетом уравнений равновесия, материальных и тепловых балансов и граничных условий. На заключительном этапе моделирования математические описания всех сторон процесса объединяются в полную математическую модель. [c.83]

    Основу математического описания ректификационной колонны составляет математическое описание процесса массопередачи на отдельной тарелке. При сделанных предположениях относительно характера движения жидкости и пара на тарелке ее математическое описание представляется системой уравнений, одно из которых служит характеристикой гидродинамической модели идеального смешения для жидкости (11,14), а другое — описанием гидродинамической модели идеального вытеснения для пара (II, 15). Интенсивность источника массы для уравнения, отражающего изменение состава пара по высоте массообмен-ного пространства тарелки, в данном случае можно выразить соотношением (11,26). Поскольку рассматривается разделение бинарной смеси, ее состав полностью характеризуется концентрацией только одного компонента, например легкого. [c.71]

    Эффективность массопередачи по Мерфри (Ем. .п) является сложной функцией кинетических и гидродинамических параметров процесса [138] и определяется с одинаковым успехом на основе диффузионной или секционной модели тарелок. [c.96]

    При рассмотрении отдельных диффузионных аппаратов излагаются их гидродинамические характеристики, являющиеся основой для рациональной организации процессов массопередачи. [c.5]

    Расчет фактического изменения концентраций компонентов в потоках с учетом кинетики процесса массопередачи и реальной гидродинамической обстановки в аппарате является чрезвычайно сложной задачей. Поэтому анализируют и рассчитывают процессы абсорбции и ректификации многокомпонентных углеводородных смесей в настоящее время на основе предположения об идеальном, теоретическом контакте между паром (газом) и жидкостью, при котором уходящие после кон- [c.66]


    Рассмотренные три стороны явлений массопередачи позволяют при математическом моделировании широко использовать блочный принцип (см. стр. 6), когда модель формируется по отдельным ее составляющим. Имея информацию о равновесных данных и составив материальный баланс процесса, далее изучается гидродинамическая модель процесса как основа математического описания. [c.8]

    Определение коэффициентов тенло-и массопередачи в уравнениях (II.1)—(П.З) является главной задачей исследования кинетики этих процессов. В основу исследования положен метод аналогии процессов массо- и теплопередачи при их совместном протекании (см. табл. II.1) и анализ кинетических уравнений, характеризующих теплообмен в двухфазной системе Ж—Г [30, 38, 173 и др.]. Коэффициенты теплопередачи и массопередачи при теплообмене р учитывают влияние гидродинамических, физических, физико-химических и геометрических факторов на скорость процессов тепло- и массообмена, выражаемую уравнениями (II.1) и (П.З). В общем случае для теплопередачи при пенном режиме [c.95]

    Подбор и расположение материала в книге таковы, что в ней последовательно рассмотрены основные типовые процессы химической технологии (гидродинамические, тепловые и массообменные), причем основное внимание уделено течению жидкостей, теплопередаче и расчету теплообменников, основам массопередачи в системах газ — жидкость, пар — жидкость, и жидкость — жидкость. Специальная глава посвящена аппаратам колонного типа ввиду их широкого распространения в химической промышленности. В книгу включены также главы, имеющие общее значение для расчета различных процессов. В них рассматриваются некоторые математические методы, используемые в технико-химических расчетах, способы составления материальных балансов и ведения процесса в стационарном и нестационарном режимах. [c.11]

    Значение изучения гидравлики для инженера-химика не исчерпывается тем, что ее законы лежат в основе гидромеханических процессов. Гидродинамические закономерности часто в значительной степени определяют характер протекания процессов теплопередачи, массопередачи и химических реакционных процессов в промышленных аппаратах. [c.23]

    Виктор Вячеславович развил теорию массопередачи, ввел новые критерии подобия с учетом турбулентного переноса и представлений о факторе динамического состояния поверхности, рассмотрел вопрос о моделировании гидродинамических, тепловых и диффузионных процессов в химических реакторах на основе теории подобия (1963 г.) и показал недостаточность этой теории для моделирования химических гфоцессов, обосновал (1960-1970 гг.) системные принципы моделирования химических процессов [c.10]

    Описанная классификация противоточных массообменных аппаратов представлена на рис. 1.3, схемы относительного движения потоков — на рис. 1.4. Классификация массообменных аппаратов по относительному движению фаз удобна тем, что она выделяет главные, наиболее характерные признаки процесса, определяющие гидродинамическую обстановку в аппарате, производительность и эффективность массопередачи. Так, на основе приведенной классификации можно проследить за непрерывным увеличением производительности различных аппаратов при сохранении практически одинаковой эффективности массопередачи с переходом от противоточных к вихревым контактным устройствам. [c.13]

    Таким образом, при изучении гидродинамической структуры потоков на основе функций РВП дифференциальные уравнения гидродинамики заменяются уравнениями математических моделей условного процесса, характеризующего дисперсию потока. Несмотря на чисто формальное описание гидродинамической структуры потоков, уравнения математических моделей с определенными из опыта коэффициентами дают возможность правильно рассчитывать изменение концентраций распределенного компонента в системе, а при переходе к массопередаче — определять общую ее эффективность. Следовательно, вся сложность изучения гидродинамики двухфазных течений в методе функций РВП переносится на простейшие уравнения математических моделей гидродинамических структур потоков и главным образом на экспериментальные значения параметров этих моделей, т. е. на коэффи циенты уравнений математических моделей. В связи с этим, вопросам определения параметров математических моделей гидродинамических структур потоков обычно уделяется большое внимание. [c.126]

    Показано [126, 130], что подобное допущение, если и может быть принято, то лишь в очень ограниченном числе случаев — при моделировании процесса ректификации бинарных смесей, а для задач моделирования ректификации многокомпонентных смесей является лишь грубым приближением. Разработка более точных математических моделей потребовала введения таких переменных, которые определяют гидродинамическую структуру взаимодействия потоков контактирующих фаз на ступенях разделения, а также переменных, характеризующих локальные параметры массопередачи в зоне контакта потоков пара и жидкости [130, 183]. Если первая группа переменных может быть часто с достаточной точностью определена из анализа конструкции тарелок или на основе экспериментальных данных по структуре потоков [130, 176], то определение локальных характеристик массопередачи обычно возможно лишь на стадии коррекции математической модели [130, 183]. [c.38]


    Элементы расчета абсорбционных и хемосорбционных процессов рассмотрены в ч. I, гл. V. Основные технологические показатели абсорбционной очистки степень очистки (к. п. д.) т] и коэффициент массопередачи k определяются растворимостью таза, гидродинамическим режимом в реакторе (Г, Р, w) и другими факторами, в частности равновесием и скоростью реакций при хемосорбции. При протекании реакций в жидкой фазе величина k выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение имеет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы не, цикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбционных процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны такнм образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.264]

    Осн. научные работы посвящены теоретическим аспектам хим. технологии. Развил (1950-е) теорию массопередачи, ввел новые критерии подобия с учетом турбулентного переноса и представлений о факторе динамического состояния поверхности. Рассмотрел вопрос о моделировании гидродинамических, тепловых и диффузионных процессов в хим. реакторах на основе теории подобия и показал [c.197]

    Книга является монографией, наиболее полно освещающей и обобщающей вопросы теории и практики процессов химического взаимодействия газов и жидкостей. В ней рассмотрены физикохимические основы и дано математическое описание этих процессов, их кинетика в различных гидродинамических условиях работы газожидкостных реакторов, абсорберов и их лабораторных моделей, элементы расчета соответствующих аппаратов. В книге приведено большое количество числовых примеров. Ряд разделов может спужить ценным пособием для экспериментаторов в области процессов массопередачи. [c.4]

    В пособии рассматриваются современные представления о равновесии и диффузии в бинарных и многокомпонентных системах. Излагаются гидродинамические основы однофазных и двухфазных систем. Даны принципы математического моделирования процессов массопередачи. Впервые систематизируются математические модели и алгоритмы расчета процессов абсорбции, ректификации и экстракции. Описываются основные типы диффузионньгх аппаратов, приводится их расчет, моделирование и масштабирование. Дается сравнительная оценка различным конструкциям диффузионных аппаратов. [c.2]

    Изучение гидродинамики потоков, а также тепло- и массопередачи показывает, что подобны не только процессы тепло- й массо-пёр бдачи, но и процесс передачи импульса количества движения иливпутрепнего трепня в потоке. Подобие указанных процессов назыМется гидродинамической, или тройной, аналогией. Гидродинамическая аналогия процессов тепло- и массопередачи позволяет определять коэффициенты тепло- и массопередачи на основе коэффициентов трения. [c.100]

    Таким образом, уравнения (5.161) и (5.162 предстамяют собой обобщенную форму записи локальных и общих характеристик эффективности массопередачи в перекрестном токе на основе модели функций распределения времени пребывания в многокомпонентных и бинарных смесях. Обобщенная форма записи матриц [Еу] и [Emv] по уравнениям (5.161) и (5,162) позволяет также достаточно просто рассчитывать эффективность массопередачи в перекрестном токе в многокомпонентных смесях при любой сложной гидродинамической обстановке в аппарате и на контактном устройстве как на основе секционной, так и диффузионной моделей продольного перемешивания потоков, используя при этом накопленный опыт изучения кинетики и гидродинамики процессов массопередачи-в бинарных смесях. [c.257]

    В предлагаемой читателю книге сделана попытка изложить теорию и практику проведения процессов массопередачи, обычно осуществляемых в двухфазных потоках газ—жидкость, пар — жидкость, жидкость — жидкость (процессы абсорбции, дистилляции и экстракции) на основе единых гидродинамических и кинетических закономерностей. При этом кинетические закономерности диффузионных явлений становятся логическим следствием сочетания макро- и микрокинетических параметров, характеризующих гидродинамику потоков. [c.3]

    В. В. Кафаров [41, 42], подвергший процесс массопередачи в системе газ — жидкость анализу на основе представлений о меж-фазной турбулентности, отмечает, что в двухфазных системах развитие вихревого движения приводит к взаимному проникновению вихрей в обе фазы, сопровождающемуся как бы эмульгированием жидкости. Образующаяся при этом гидродинамическая система газо-жидкостпой эмульсии является системой, в которой обеспечивается громадное развитие межфазовой поверхности при весьл1а быстром ее обновлении и происходит резкое увеличение интенсивности процессов массо- и теплообмена. [c.14]

    В принципе возможен следующий путь масштабирования колонных аппаратов. На основе физической модели структуры потоков в аппарате данной (конструкции и результатов зкаперименталь-ного исследования его ла(бораторного или укрупненного образца получают зависимости для оценки Еп в промышленном аппарате. Расчет аппарата с учетом кинетических (коэффициенты массопередачи, константы скорости реакции) и найденных гидродинамических ( п) параметров процесса является достаточно надежным. [c.253]

    Процессы нефтепереработки и нефтехимии, намечаемые к крупнотоннажному осуществлению, должны изучаться предварительно на пилотных установках при искусственном наложении на основные реакции отдельных осложнений или их комплекса. Углубленное изучение характера протекания химико-технологических процессов нефтепереработки при наложении на них гидродинамических, массообменных и теплотехнических осложнений в нефтепереработке носит название исследований прикладной макрокинетики, в отличие от истинной неосложненной микрокинетики, исследуемой в лабораториях. Существуют и другие названия прикладной. макрокинетики химико-технологическая кинетика [20], кинетика промышленная [21, 22], динамика промышленных процессов [7], кинетика каталитических реакций с массопередачей и теплопередачей [23, 24], просто макрокинетика [25, 26] и, наконец, математическое описание [12, 27]. Основам теоретической [c.33]

    Основные научные работы посвящены тгоретическим аспектам химической технологии. Развил (1950-е) теорию массопередачи, ввел новые критерии подобия с учетом турбулентного переноса и представлений о факторе динамического состояния поверхности. Рассмотрел вопрос о моделировании гидродинамических, тепловых и диффузионных процессов в химических реакторах на основе теории подобия и показал (1963) недостаточность этой теории для моделирования химических процессов. Обосновал (1960—1970) системные принципы математического моделирования химических процессов. Открыл явление скачкообразного увеличения тепло- и массообмена при инверсии фаз. Автор учебников и монографий— Основы массопередачи (3-е изд. 1979), Методы кибернетики в химии и химической технологии (3-е изд. 1976), Введение в инженерные расчеты реакторов с неподвижным слоем катализатора (1969) и др. [c.227]

    В основе пленочной теории Уитмана и Льюиса лежат допущения, согласно которым процесс переноса в пленках стационарен и описывается одномерным уравнением молекулярной диффузии при условии фазового равновесия на границе раздела жидкость — жидкость или жидкость — газ. Скорость массопередачи по каждой из фаз определяется выражением (2.3), в Котором частные коэффициенты массопередачи равны /С) = >1/61 и Кг = Ог/бг, где Ьг, бь 62 — коэффициенты диффузии и поперечные размеры пленок соответствующих фаз (см. рис. 2.1). Пленочная теория н дает методов для определения толщин пленок 61 и 62, которые зависят от физико-химических свойств жидкостей и гидродинамических условий протекаемых процессов. [c.57]


Смотреть страницы где упоминается термин Гидродинамические основы процессов массопередачи: [c.2]    [c.304]    [c.2]   
Смотреть главы в:

Основы массопередачи Издание 3 -> Гидродинамические основы процессов массопередачи




ПОИСК





Смотрите так же термины и статьи:

Массопередача

Массопередача гидродинамические основы

Массопередача массопередачи

Основы массопередачи

Основы процессов

Процесс гидродинамические



© 2024 chem21.info Реклама на сайте