Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкая фаза, анализ Жидкости

    Имеется немало примеров того, что параметры фазового равновесия жидкость — пар для смесей играют важную роль при расчетах теплообмена. В то время как точка кипения для чистых компонентов при данном давлении фиксирована, для смеси такая ситуация не сохраняется. Диапазон температур, в котором имеет место кипение (или конденсация) при заданном давлении, зависит от состава смеси. На рис. 3 представлена диаграмма температура — давление типичной смеси легких углеводородов. Состав системы в целом, фазовое равновесие которой представлено на рис. 3, является постоянным. Составы паровой и жидкой фаз будут меняться от точки к точке. При анализе рис. 3 сразу видно различие в свойствах смеси и чистого вещества. Критическая температура чистого компонента определяется как температура, выше которой в веществе исчезает различие между жидкостью и паром. Очевидно, что такое определение неприменимо к исследуемой смеси. Здесь существует диапазон температур выше критической температуры, в котором жидкость некоторого состава может существовать одновременно и в равновесии с паром. Для чистого компонента критическое давление [c.166]


    Анализ результатов расчета насадочного абсорбера показывает, что основное диффузионное сопротивление массопереносу в этом процессе сосредоточено в жидкой фазе, поэтому можно интенсифицировать процесс абсорбции, увеличив скорость жидкости. Для этого нужно либо увеличить расход абсорбента, либо уменьшить диаметр абсорбера. Увеличение расхода абсорбента приведет к соответствующему увеличению нагрузки на систему регенерации абсорбента, что связано с существенным повы- [c.108]

    Таким образом, только когда В а = Ов, пенетрационная и пленочная теории дают идентичные результаты. В обоих методах анализа хода процесса коэффициент массоотдачи со стороны жидкой фазы не зависит от концентрации компонента А на межфазной поверхности и концентрации компонента В в турбулентной зоне жидкости. Для определения значения этого коэффициента при проектировании указанные величины должны быть известны. [c.254]

    При анализе жидкой фазы всю жидкость собирают в съемном конденсаторе 1 и количество ее определяют взвешиванием. Зная массу (количество) жидкости, ее объем под давлением (с учетом расширения пьезометров под давлением) и количество растворенного в ней газа, можно определить плотность жидкости. [c.313]

    Сплошные линии — результаты термического анализа, пунктиры — экстраполяция, основанная на термических данных для температур выше 14° К и рентгеноструктурных данных дпя 4,2° К 1 — жидкая фаза 2 — жидкость + кристаллы Вг 3 — жидкость + кристаллы Нг 4 — твердый раствор Нг в Т>г 5 — смесь кристаллов Нг и Вг — твердый раствор Вг в Нг [c.252]

    При -анализе жидкой фазы всю жидкость собирают в съемном конденсаторе / и ее количество определяют взвешиванием. Зная [c.179]

    Если изомеризация алкена проводится в жидкой фазе, рассмотренный метод расчета должен быть дополнен анализом равновесия между жидкой и газовой фазами. Простым приемом, позволяющим перейти от равновесия в газовой фазе к равновесию в жидкой фазе, является следующий. Предположим, что изомеризация в газовой фазе доведена до равновесия. Тогда находящаяся в равновесии с этой фазой жидкость также, очевидно, будет термодинамически равновесной. Поскольку давление пара компонента над идеальным раствором связано с составом раствора законом Рауля, получаем такую зависимость равновесного парциального давления /-компонента Я, и его равновесной мольной доли в жидкой фазе уу. [c.14]


    В ходе расследования аварии был проведен химический и спектральный анализ проб жидкости и осадка, отобранных из ресивера. Жидкая фаза содержала около 20% (масс.) хлорного железа с примесью хлористого железа и более 4% (масс.) свободной соляной кислоты. Во всех пробах был обнаружен порофор, гидро-азосоединения и продукты их разложения. [c.356]

    Прн анализе процессов переноса тепла и массы в зерне катализатора необходимо учитывать как наличие, так и отсутствие межфазных градиентов на поверхности раздела жидкость—катализатор. Предполагается, что концентрация и температура реагентов в жидкой фазе известны. Тогда общая степень внутреннего использования поверхности катализатора 1] представляется как функция степени внутреннего использования поверхности катализатора 11 и двух безразмерных комплексов, содержащих критерии 1Чи и ЗЬ. При таких исследованиях устанавливаются оптимальные размеры зерен катализатора и выявляются причины [c.28]

    Метод анализа действительного процесса противоточной промывки, когда полного выравнивания концентраций извлекаемого вещества в жидкой фазе осадка и промывной жидкости не дости- [c.239]

    Выполнен [278] математический анализ процесса промывки с разделением его на периоды вытеснения жидкой фазы осадка промывной жидкостью (поршневое течение), механического увлечения жидкой фазы осадка промывной жидкостью и диффузии жидкой фазы осадка в струйки промывной жидкости. Приведены уравнения и графики, соответствующие закономерностям рассматриваемого процесса. [c.257]

    При работе с газовыми смесями состав смеси, выходящей из сосуда, отличается от состава исходной смеси вследствие неодинаковой растворимости компонентов газа в жидкости. Поэтому перед возвращением в сосуд газовой смеси в нее добавляют компоненты, необходимые для восстановления ее исходного состава. Об установлении равновесия судят по результатам анализа жидкой фазы. Особенно широкое применение получили динамические методы при определении растворимости твердых веществ, слабо растворимых в сжатых газах, так как позволяют отобрать на анализ любое количество газа. [c.28]

    В анализе нефтяных ГАС получили распространение сорбционные и хроматографические процессы, основанные на использовании адсорбционного, абсорбционного (разделение на инертном носителе, смоченном не испаряющейся в условиях анализа жидкостью), ионообменного, эксклюзионного (молекулярно-ситового, гель-фильтрационного) и координационного принципов разделения, в колоночном или плоскостном (тонкослойная или бумажная хроматография) техническом оформлениях, с применением жидкой или газообразной подвижной фазы, [c.15]

    Определение температуры кипения. Начало кипения можно определить как температуру, при которой вся система является жидкостью, по содержит неопределенно малое количество паров. Количество паров принимается таким, при котором состав жидкости остается равным составу всей системы. Благодаря этому может быть найдена из общего анализа системы. Однако, согласно определению, сумма молярных долей всех компонентов должна быть равна единице как для паровой, так и для жидкой фазы. Отсюда следует, что [c.61]

    Статический метод, или метод закалки, наиболее точный и надежный применительно к большинству силикатных систем. Заключается он в следующем. Смесь заданного состава предварительно многократно спекают или плавят и измельчают для обеспечения высокой степени гомогенности. Затем небольшую навеску приготовленной смеси (обычно 0,2—0,5 г) заворачивают в платиновую фольгу и помещают в печь, нагретую до заданной температуры. При длительной выдержке в печи в пробе устанавливается равновесное для данной температуры состояние, которое контролируется повторным нагревом пробы при больших длительностях выдержки и сохранением фазового состава образца. Потом пробу подвергают резкой закалке, сбрасывая ее в холодную инертную жидкость. При таком охлаждении жидкая фаза, содержавшаяся в образце при исследуемой температуре, застывает в виде стекла, а кристаллические фазы фиксируются в том же состоянии, в каком они были во время выдержки. Исследуя закаленную пробу с помощью поляризационного микроскопа и рентгенофазового анализа, определяют природу фаз, сосуществовавших при температуре опыта. [c.49]

    На основе анализа и оценки явлений в газовой и жидкой фазе можно придти к заключению, что основным процессом в этих аппаратах является меж-фазный теплообмен. Принцип работы аппаратов основывается на максимальном использовании развитой гидродинамической кавитации и увеличении скорости массообмена закрученного потока. На рис. 5.8 приведена схема установки для извлечения растворенных газов из жидкости, включающая ВЗУ. [c.266]


    Е. Пленочное кипение. В [20] выполнено теоретическое и экспериментальное исследование пленочного кипения бинарных смесей на вертикальной пластине. Анализ проводился для двухфазного пограничного слоя рассматривалось парообразование путем испарения при плоской границе раздела без учета пара, отводимого пузырями. Тепловой поток для заданного перегрева стенки увеличивался за счет теплоты, передаваемой конвекцией от границы раздела в объем жидкости. Это противоположно ситуации, наблюдаемой при пузырьковом кипении, где для данного перегрева стенки тепловые потоки снижаются при добавлении второго компонента. Однако достигается момент, когда тепловой поток становится достаточным для снижения концентрации более летучего компонента на границе раздела до нуля. Тогда тепловой поток через жидкую фазу достигает максимума и при увеличении общей тепловой нагрузки составляет ее меньшую часть. Как ожидается, эффект второй фазы исчезает при перегреве стенки, большем чем [c.418]

    Жидкости для промывки скважин используются как гомогенные среды, так и в качестве одной из фаз гетерогенных систем (суспензий, эмульсий, пен). В гетерогенных дисперсных системах жидкости, как правило, являются той средой, которая в наибольшей степени ответственна за физико-химические процессы в системе, и ее свойства находятся в теснейшей зависимости от свойств жидкой фазы. В буровой практике в качестве жидкой фазы применяют углеводородные жидкости (нефть, дизельное топливо) и особенно воду. Поэтому, не останавливаясь на роли этих жидкостей в дисперсной системе, рассмотрим некоторые физико-химические особенности их строения. Это важно еще и потому, что при анализе процессов, происходящих в промывочных жидкостях, до сих пор, к сожалению, не учитываются свойства их жидкой фазы. [c.22]

    Теоретические расчеты межмолекулярных взаимодействий пока еще, как правило, имеют значение для качественных выводов об их особенностях. Количественные характеристики в подавляющем большинстве случаев получаются с помощью эксперимента. Экспериментальные данные об энергии межмолекулярного взаимодействия могут быть описаны с помощью эмпирических формул. Некоторые из них будут рассмотрены в этой главе. Почти все они основаны на анализе свойств разреженных газов. Формулы, пригодные для эмпирического описания межмолекулярных взаимодействий в разреженных газах, часто применяют для тех же целей к жидким системам. Здесь порой упускают из виду следующее. Во-первых, в разреженных газах среднее расстояние между молекулами велико, поэтому сравнительно большой вклад во взаимодействие вносят дальнодействующие силы. (Когда молекулы электрически нейтральны, то это в основном дипольные и лондоновские взаимодействия.) В жидкостях же, как мы видели,очень важна роль близкодействующих сил. Во-вторых, энергия реактивного взаимодействия полярных молекул с окружающей средой в газах мала, а в жидкостях велика и может существенно изменять энергию образования связей между молекулами. В этом отношении формулы, основанные на свойствах газов, ведут к недооценке роли дальнодействующих сил. В-третьих, при переходе от жидкой фазы к парам межмолекулярные силы могут испытывать качественные изменения, обусловленные влиянием коллективного взаимодействия большого числа частиц. Так происходит, например, при испарении металлов. В-четвертых, эмпирические формулы представляют собой усредненную эффективную характеристику межмолекулярных сил. Способ усреднения обычно не ясен, но он должен зависеть от метода исследования энергии взаимодействия и влиять на математическую форму эмпирической потенциальной функции Е(Я) и значения фигурирующих в этой функции параметров. [c.92]

    Статические и кинетические параметры хроматографического опыта. Размеры колонки. Влияние отношения весовых количеств жидкой фазы и носителя. Максимальная температура колонки для различных жидких фаз. Выбор жидкой фазы для решения конкретных задач разделения. Влияние природы жидкости, газа-носителя и температуры (ширина полосы, продолжительность анализа, чувствительность детектора), Влияние скорости потока газа-носителя. Ис- [c.297]

    Однородный расплав А + В (любая точка однофазной области) можно рассматривать как ненасыщенный раствор компонентов (А в В или В в А). Так, например, в точке Ь жидкая фаза состоит из 20% В и 80% А и является ненасыщенным раствором компонента А в компоненте В. При охлаждении этого расплава (по вертикали) до температуры /г обнаруживается выделение кристаллов компонента А. При этой температуре раствор становится насыщенным относительно металла А. Поскольку в процессе кристаллизации компонент А выделяется из расплава, жидкая фаза обогащается компонентом В в соответствии с кривой ликвидуса. Одновременно снижается температура кристаллизации. Все это происходит то тех пор, пока состав расплава и температура кристаллизации не достигнут минимума а на кривой ликвидуса. Расплав такого состава (эвтектический состав) насыщен и по компоненту А, и по компоненту В и поэтому затвердевает полностью. Температура 1, при которой происходит затвердевание, называется эвтектической точкой. Это самая низкая температура, при которой еще может существовать жидкая смесь А + В. Сплав, содержащий 15% А и 85% В, называют эвтектическим, он представляет собой механическую смесь кристаллитов металлов А и В. При микроскопическом анализе такого сплава оба металла видны в форме хорошо различимых пластинок или слоев. Если в исходной жидкой фазе содержание компонента А более 15%, под микроскопом видны отдельные кристаллы А, которые выделяются при затвердевании первыми, окруженные кристаллизующейся позже эвтектикой. Если же содержание А в исходной жидкости менее 15 %, то в массе эвтектики видны первичные кристаллы В. [c.275]

    Для разделения в качественном систематическом анализе могут быть использованы следующие комбинации фаз жидкость — твердая фаза жидкость 1—жидкость 2 (несмешивающиеся жидкости) газ — твердая фаза газ — жидкость. В данной книге рассматривается распределение веществ между жидкой и твердой фазами и частично распределение между двумя несмешивающи-мися жидкостями. [c.118]

    При изучении структуры индивидуальных жидкостей и концентрированных растворов существенную пользу могут принести рентгенография, радиоспектроскопические измерения и релеевское рассеяние света. Преимущество этих методов состоит в том, что исследователи располагают теорией, устанавливающей вполне определенную связь между результатами измерений и строением жидких фаз. Вопросы рентгенографии жидкостей обсуждаются в следующей главе. Здесь мы дадим некоторое представление о возможностях анализа данных, получаемых методами диэлектрической радиоспектроскопии и релеевского рассеяния света. [c.108]

    Исходя из изложенного в предыдущем параграфе анализа строения двойного электрического слоя, можно более полно проанализировать характер взаимных смещений фаз в двойном слое под действием внешнего поля, параллельного поверхности при этом твердая фаза считается неподвижной. На рис. VII—10 приведены распределение потенциала ф(л ) и скорости смещения u x) слоев жидкости относительно поверхности твердого тела в модели Гельмгольца (прямые 1 и / ) действительному характеру распределения потенциала в двойном слое отвечает кривая 2. Предстоит выяснить вопрос, в какой мере отличие в распределении потенциала должно сказаться на распределении скоростей движения жидкости и в итоге на скорости смещения uo, наблюдаемой на опыте vq — это предел, к которому стремится функция t (x) при x-i-oo). При этом нужно обратить внимание на две особенности в поведении раствора у твердой поверхности во-первых, на диффузность слоя с избыточной концентрацией противоионов, во-вто-рых, на возможные изменения свойств жидкой фазы у твердой поверхности, связанные с действием сил адгезии. [c.189]

    Статические методы отличаются способами перёмешивання системы и способами отбора проб на анализ. Перемешивание системы производят электромагнитной мешалкой, помещаемой внутри сосуда равновесия, вращением самого сосуда или цир-куляцонным насосом, забирающим газовую фазу и проталкивающим ее через жидкую. Изучая растворимость жидкостей в газах, удобнее всего использовать для /перемешивания электромагнитную мешалку. [c.27]

    Для анализа жидких углеводородных газов широко применяется способ низкотемпературной ректификации. Сущность его заключается в многократном обмене компонентами между жидкостью и паром на поверхности насадки, вследствие чего пар обогащается нижекипящими продуктами, а жидкость — вышекипящими. Таким образом, в результате многократного испарения и конденсации можно получить в паровой фазе наиболее летучий компонент, а в жидкой фазе (жидкости) — менее летучие компоненты. [c.159]

    Если сепаратор запроектирован правнльно и эксплуатируется с проектной или меньшей производительностью, то в нем практически достигается фазовое равпоиесие между жидкостью и паром. Время пребывания жидкой фазы в сепараторе довольно велико, и если ого использовать для расчета однократного испарения, то результаты расчетов не будут точно отражать реальный физический процесс однократного испарения. В контактных устройствах типа тарелок (абсорберах, ректификационных колоннах) равновесие достигается только на 25—50%, поэтому расчет однократного испарения для них позволяет получить скорее идеальное, чем реальное представление о работе. Точность ожидаемых результатов расчета долягна зависеть от точности анализов и принятого значения константы равновесия К. Так как анализы и величины К никогда не бывают точными, то и окончательные результаты неточны. Поэтому задача должна состоять не в том, чтобы найти абсолютно точные ответы, а в том, чтобы эти ответы охватывали проблему в объеме, достаточном для планирования и принятия решений. [c.72]

    Следует отметить, что жидкая фаза газожидкостного потока является носителем растворенного в ней ингибитора коррозии. Поэтому при разработке сероводородсодержащих газоконденсатных месторождений необходимо обеспечивать бесперебойное движение ингибиторной жидкости по трубопроводу. Анализ специфики данных месторождений показывает, что основным фактором при установлении их технологических параметров является общая коррозия и коррозионное (сульфидное) растрескивание. Необходимо также учитывать возможность отложения (при определенных условиях) элементарной серы. [c.11]

    Диализ хлорпроизводных фенола и феноксиуксусной кислоты. Для анализа продуктов хлорирования нами были разработаны хроматографические методики анализа. Хлор-фенолы анализировались с применением в качестве детектора катарометра, стационарная жидкая фаза—силиконовые жидкости, носитель—фторопластовый порошок. Для разделения различных комноие ггов применялись специальные колонки или их комбинации. Газ-носитель—водород. [c.23]

    Применительно к битумному производству указывается, что слишком большой расход воздуха вызывает коалесценцию пузырьков и образование больших масс недиспергированного воздуха, который проходит через аппарат, не контактируя с жидкой фазой [И]. Прорыв воздуха происходит, вероятно, по центру колонны, так как известно [79], что восходящее движение жидкости (обусловленное движением газа, поскольку именно газовая фаза является движущей силой перемешивания) в барботажном суюе имеет место в средней адсти колонны (нисходящее — у стенок) и максимальная скорость подъема наблюдается, в общем, по оси колонны [79], хотя центр восходящего потока н блуждает в поперечном сечении [80]. Отмечалось, что уже в диапазоне нагрузок по воздуху 2,4— 3,9 м /(м -мин) увеличение нагрузки ухудшает степень использования кислорода воздуха [2, 81]. На практике это привело к ограничению нагрузки по воздуху до величины 4 м (м -мин) [74, 82]. Однако проведенный нами дополнительный анализ экспериментального материала показал, что заключение о снижении степени использования кислорода в указанных условиях является спорным, так как разница в результатах определения [c.58]

    Кривые растворимости системы двух частично растворимых жидкостей даны на рпс. 2. 20. Из анализа этих кривых следует, что при температуре I и изменении состава смеси от О до и от х до 1 образуется однофазная гомогенная смесь, так как в этих пределах концептраций жидкости полностью взаимно растворяются. При составе смесп в пределах от до х образуются две жидкие фазы с колцлптрацпей х в одпоп фазе и х в другой. Так как взаиморастворимость двух жидкостей зависит от температуры, то величииы х и х , в пределах которых жидкости образуют две фазы, также изменяются с изменением температуры. Прп температуре выше критической ( кр) смесь об-разу(уг гомогенный раствор при смешении исходных жидкостей в любых соотношениях (рис. 2. 20). Таким образом, при изменении состава исходной смеси от х до меняются только веса фаз, а составы фаз остаются строго неизменными и равными х для одного слоя и х для другого. [c.67]

    Другой весьма удобный метод анализа СНГ изложен в А5ТМ В2420. Проба испаренной газовой фазы (расход 2,36 л/мин) омывает лист бумаги так же, как и при методе газовый экзаменатор . Если обесцвечивания не наблюдается, объемная доля НгЗ ниже ,00015 %. В отношении оценки уровня концентрации НгЗ в исходной жидкой фазе СНГ нужно дать некоторые пояснения. Допустим. что уровень обнаружения корреспондируется с максимально регламентированной техническими условиями объемной долей 0,0001 %, т.е. с концентрацией НгЗ в газе, определяемой по ацетатсвинцовой бумаге. Если упомянутый метод использован для испытания пробы жидкости, взятой из герметичного сосуда, при полном испарении ее, то максимальная массовая доля НгЗ в жидкой фазе будет равна 0,00008 %, молярная — 0,0001 %, а объемная — 0,00005 %. Если молярное распределение НгЗ между жидкой и газовой фазами в герметичной емкости с температурой 20°С равно 1 6, то максимальная молярная доля НгЗ в парах, находящихся над поверхностью жидкости, равна 0,0006 % объемная— 0,0006 %, массовая — 0,00047 %. [c.88]

    Жидкая фаза - промежуточная между твердой и газообразной. При высоких температурах и не слишком высоких давлениях она проявляет сходство с газовой фазой. При температурах, близких к температуре плавления, жидкость, наоборот, близка по строений и свойствам к кристаллическим телам. Применение рентгенографических методов анализа позволило обнаружить, что расположение частиц в жидкости при температурах, близких к кристаллизации, не беспорядочно, как в газах, но оказывается весьма сходным с правилмым расположением, в которое оно переходит при кристаллизации жидкостей. Наиболее резко этот факт проявляется для. органических веществ с сильно вытянутыми молекулами. Он интерпретируется многими авторами как сохранение при плавлении кристаллического тела некоторой степени ближнего порядка в относительном расположении частиц при ликвидации дальнего поряд- [c.158]

    Изменение концеитрацин жидкости при взаимодействии с твердой фазой вблизи границы раздела фаз невелико вследствие малой сжимаемости. Однако даже эти незначительные изменения приводят к особым свойствам связанной полем твердой частицы жидкости. В промывочных жидкостях дисперсионная среда редко бывает чистой . Оиа состоит из собственной жидкости, а также растворенных в ней ионов и молекул, адсорбирующихся одновременно с растворителем. Последнее затрудняет создание общей теории адсорбции па твердой поверхности, учитывающей также межмолекулярное взаимодействие в жидкой фазе. Поэтому при анализе явлений на границах раздела твердое—жидкость рассматривают отдельно смачивание и адсорбцию растворенных веществ (нейтральных молекул — молекулярная адсорбция и ионов — адсорбция электролитов). [c.47]

    Иначе обстоит дело, когда требуется выяснить строение быстро разрушающихся ассоциатов и комплексов с участием молекул компонента, концентрация которого в растворе велика. В пределе это может быть однокомпонентная жидкость. В таких случаях картина ассоциации и комплексообразования обычно усложняется. Анализ ее лучше выполнять несколькими независимыми методами, дополняющими и контролирующими друг друга. Когда среднее время жизни ассоциатов или комплексов в концентрированных растворах меньше 10" — 10 с, применение ИК-спектроскопии или ЯМР обычно указывает лишь на существование явлений ассоциации и комплексообразования. Обнаруживаются изменения химических сдвигов, смещения в ИК-спектре характеристических полос поглощения, аномальное изменение их интенсивности, появление новых полос, и факты порой дают косвенные основания для гипотез о структуре жидкой фазы. Но теории, однозначно связывающей инфракрасные спектры или спектры ЯМР со строением жидкостей, нет, поэтому гипотезы, основанные на данных об этих спектрах для концентрированных растворов нуждаются в проверке. Например, ИК-спектры жидкой уксусной кислоты исследуются около 40 лет. Спектры показывают, что в жидкой уксусной кислоте имеются водородные связи С—Н...0 но они не дают сведений о строении ассоциатов (СНзСООН), и их концентрациях. Одни из авторов утверждают, что уксусная кислота состоит из кольцевых димеров, другие находят цепочечные образования, третьи отмечают, что спектр связей О—Н...0 цепочечных и кольцевых ассоциатов одинаков и поэтому с помощью ИК-спектров эти структуры различать невозможно. Другой пример — жидкий диметилформамид. Спектры ЯМР дают основание считать, что в жидком диметилформамиде и его растворах присутствуют ассоциаты (СНз)2КСНО. Было высказано предположение, что молекулы диметилформамида в жидкой фазе образуют кольцевые димеры. Но, как вскоре выяснилось, наблюдавшиеся особенности спектров ЯМР главным образом обусловлены не ассоциацией, а влиянием реактивного поля. Оказалось, что ассоциаты (СНдМСНО) имеют в основном цепочечную структуру. [c.108]

    Если неподвижная фаза — жидкость, нанесенная на поверхность инертного носителя, то говорят о распределительной хроматографии. Хроматография в газовой фазе, особенно вариант газо-жидкостной распределительной хроматографии, благодаря своей эффективности получила широкое применение в анализе сложных смесей газов и паров. Газо-жидкостная распределительная хроматография обладает рядом преимуществ перед газо-адсорбционной хроматографией. В случае газо-жидкостной хроматографии получают узкие, почти симметричные прояйительные полосы (пики), что способствует лучшему разделению компонентов и сокращению времени анализа. Это можно наблюдать на примере разделения углеводородов. Если методом адсорбционной хроматографии разделяют главным образом низкокипящие газообразные соединения, то с помощью газовой распределительной хроматографии можно анализировать почти все вещества, обладающие хотя бы незначительной летучестью, подобрав соответствующую неподвижную жидкую фазу и условия разделения. [c.98]

    Прибор ГСТЛ-3 предназначен для анализа газовых смесей, состоящих из предельных углеводородов от метана до гексана (как нормальных, так и изомерных), водорода и непредельных углеводородов от этилена до бутилена. Анализ газовых смесей с помощью этого хроматографа основан на хроматографическом разделении их в колонке с тем или иным адсорбентом или неподвижной жидкостью, т. е. нелетучим растворителем (жидкой фазой), нанесенной на твердый порошкообразный материал-носитель. [c.144]

    Таким образом, в логарифмических координатах распределение шримеси по высоте колонны выражается уравнением прямой линии, что подтверждается и экспериментально. На основании анализа проб жидкости в различных сечениях по высоте колонны с помощью уравнения (11.67) можно определить величину Ро или концентрацию примеси в жидком фазе в нижнем конце колонны. К этому можно прибегнуть в том случае, когда для очистки применяется высокоэффективная колонна и концентрация примеси в жидкой фазе на выходе из колонны может лежать ниже чувствительности используемого метода анализа. [c.66]

    Механизм распределения компонентов смеси между фазами может быть различным по этому признаку различают адсорбционную и распределительную (различная растворимость в неподвижной жидкой фазе) хроматографию. Механизм распределения непосредственно связан с агрегатным состоянием подвижной и неподвижной фаз различают газовую или газоадсорбционную хроматографию (подвилшая фаза — газ, неподвижная — твердое тело, механизм — адсорбционный), га-зонсидкостную (подвижная фаза — газ, неподвижная — вы-сококипящая жидкость, механизм распределительный), жидкостную (подвижная и неподвижная фазы — жидкости, механизм распределительный). Два первых типа хроматографии наиболее широко применяются в современной аналитической практике, особенно для анализа сложных органических смесей. Способы размещения неподвижной жидкой фазы также разнообразны. Наиболее широко распространенный, классический способ — колоночная хроматография. Стеклянная или металлическая колонка наполняется слоем однородных по раз- [c.232]

    Жидкие кристаллы бывают трех типов смектические, нематические и холестерические. На рис. 6.16 показано, каким образом соотносятся друг с другом смектическая и нематическая фазы. Смектические жидкости не текут свободно они скользят в одной плоскости. Рентгеноструктурный анализ указывает на структуру, состоящую из последовательности плоских слоев, расстояние между которыми больше, чем расстояние между молекулами в кристалле. Смектическая фаза может плавиться, превращаясь в изотропную жидкость, или по достижении температуры перехода образовать нематическую фазу. Нематическая фаза текуча, рентгеноструктурный анализ показывает, что она похожа на обычные жидкости. При наблюде . , жидких кристаллов в поляризованном свете под микроскопом видны характерные окрашенные структуры. У нематической фазы эти структуры имеют вид нитей. [c.142]

    На примере определения летучих галогенированных соединений в водопроводной воде экспериментально установлены основные характеристики проточного парофазного анализа. Разработана методика определения общей органической серы в нефтепродуктах, включающая полный гидрогенолиз связей -S, с улавливанием образующегося сероводорода водным раствором щелочи и его газохроматофафическим определением. Исследованы возможности газохроматофафического парофазного анализа для изучения равновесия жидкость - пар в четырехкомпонентных системах и показана возможность расчета состава жидкой фазы по данным о зависимости давления конденсации паровой фазы от ее состава. [c.99]

    Жидкой фазой для разделения углеводородов при хроматографическом анализе служат специальные жидкости, представляюш 1в собой высококипя-щие углеводороды и синтезированные вещества. Эти жидкости наносят на поверхность малоактивного адсорбента, например на измельченный инзен-ский кирпич (ИНЗ-600), диатомовый носитель (ТНД-ТСМ), хромосорб, стерхимол и др. [c.27]


Смотреть страницы где упоминается термин Жидкая фаза, анализ Жидкости: [c.697]    [c.495]    [c.33]    [c.5]    [c.104]   
Техника физико-химических исследований при высоких и сверхвысоких давлениях Изд3 (1965) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза

Жидкости анализ



© 2025 chem21.info Реклама на сайте