Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Различные формы элементов в газообразном состоянии

    Аллотропные видоизменения элементарного вещества — это вещества, молекулы которых различны, хотя и образованы атомами одного и того же химического элемента. Свойства аллотропных видоизменений одного и того же элемента, проявляемые в различных агрегатных состояниях, различны. Способность одного и того же вещества существовать в различных кристаллических формах называют полиморфизмом. Он может быть двух видов энантиотропный, когда относительная устойчивость полиморфных видоизменений зависит от температуры и существует температура обратимого превращения, и монотропный, когда одно видоизменение устойчивее другого независимо от температуры. Энантиотропные полиморфные видоизменения, таким образом, подобны агрегатным состояниям одного и того же вещества. Монотропные полиморфные видоизменения являются, по существу, аллотропными видоизменениями в кристаллическом состоянии. Таким образом, границы понятий аллотропии и полиморфизма не вполне совпадают. Следует отметить, что во многих случаях элементарные вещества в жидком и газообразном состояниях содержат молекулы, различные как по числу атомов, так и по структуре. Относительное содержание этих различных молекул в массе элементарного вещества зависит от температуры и других условий, причем изменение этих условий обычно приводит к возврату соответствующих равновесий. В связи с этим, а также с трудностью изоляции отдельных форм молекул последние не принято считать самостоятельными аллотропными видоизменениями. Известным примером таких элементарных веществ является сера, которая в газовом состоянии содержит молекулы четырех видов — За, 5 , (цепе-) и 5 (цикло-). [c.37]


    Химические элементы в свободном состоянии представлены практически полностью для различных форм (кроме газообразных ионов, для которых приведены только примеры некоторых однозарядных ионов). [c.313]

    Различные формы элементов в газообразном состоянии [c.178]

    Не следует путать полиморфизм с аллотропией — явлением существования элемента в виде различных простых веществ независимо от их фазового состояния. Например, кислород О2 и озон Оз — аллотропные формы кислорода, существующие в газообразном, жидком и кристаллическом состояниях. Графит и алмаз — аллотропные формы углерода и одновременно его кристаллические модификации. Понятия аллотропии> и полиморфизма совпадают для кристаллического состояния простого вещества. [c.12]

    Состояние атомов во Вселенной. На Земле различные элементы в зависимости от их свойств существуют в разнообразном виде — в газообразном состоянии, в форме металлов, в виде ионных кристаллов, в стеклообразной форме. По оценкам, которые уже давно производятся путем изучения метеоритов, а в новейшее время и при обследовании Луны и Марса с помощью искусственных спутников, можно считать, что и вне Земли вещества встречаются почти в тех же формах. Вместе с тем возникает вопрос, в каком состоянии находятся элементы в условиях стационарных звезд, в которых продолжается синтез элементов, а также в межзвездном пространстве, где плотность материи чрезвычайно мала. [c.22]

    Атомные рефракции элементов С, Н, О, Н, С1, Вг, I, главным образом входящих в состав органических соединений, можно непосредственно определить только для тех, которые находятся в газообразном состоянии. Нри аддитивном вычислении по этим величинам молекулярной ре.фракции соединений в некоторых случаях наблюдается хорошее согласие между теорией и экспериментом, т. е. совпадение вычисленной и найденной молекулярной рефракции. Совпадение оказалось хуже при наличии в соединении этиленовых и ацетиленовых связей, карбонильного кислорода и вообще в тех случаях, когда атомы соединены неоднородными связями. Таким образом, молекулярная рефракция не является строго аддитивной функцией атомных рефракций, а зависит от строения. Всего нагляднее этот факт обнаруживается при сравнении изомеров, например диметилового эфира и уксусного альдегида, которые имеют различную молекулярную рефракцию это объясняют тем, что различным формам кислородных связей соответствует различный действительный молекулярный объем. [c.149]


    Применение сожжения в колбе с кислородом для анализа элементоорганических соединений встречает ряд трудностей. Данные, приводимые в литературе относительно целесообразности его использования, противоречивы. Причины неудовлетворительных результатов не всегда установлены. Вероятно, причины неудач следует искать в специфике разложения элементоорганических соединений. Реакционная смесь, образующаяся в момент разложения ЭОС, более сложна, чем в случае анализа соединений, не содержащих гетероэлемент. В зоне горения образуются не только газообразные, но и твердые продукты окисления. Может происходить взаимодействие как между элементами, составляющими молекулу анализируемого вещества, так и между гетероэлементом и материалом частей аппаратуры, в особенности находящихся в накаленной зоне (держатель навески и контейнер, в котором помещается навеска). В качестве материала для держателя навесок, завернутых в беззольный фильтр, применяют платину, а также кварц, стекло, различные металлы. Платина и кварц, инертные по отношению к продуктам окисления элементов-органогенов, в случае анализа элементоорганических соединений могут выступать как активные компоненты реакционной смеси и давать с определяемыми гетероэлементами побочные продукты разложения — сплавы, твердые растворы, силикаты и пр. Наличие подобных реакций с платиной, приводящих к искажению результатов анализа, установлено для органических соединений германия, мышьяка и фосфора. Проведено сравнительное изучение условий сожжения ЭОС в колбе с кислородом. Испытаны различные материалы — платина, кварц, нержавеющая сталь —для изготовления держателя навески опробованы различные формы держателей. Опыт показал, что лучше всего сожжение происходит в держателе в виде спирали, так как в этом случае обеспечены свободный доступ кислорода к навеске и равномерное горение ее. Срок службы такого держателя в 4—5 раз больше, чем широко используемого держателя из платиновой сетки. Успех сожжения зависит также от размера навески и состояния платиновой проволоки, выполняющей роль катализатора. Для анализа органических соединений, содержащих германий, мышьяк, рений или фосфор, предложена конструкция кварцевой спирали (рис. 51, 5.2), обеспечивающая количественное разложение ЭОС. Найдены также оптимальные условия сожжения навески в спирали из утолщенной кварцевой нити, которая более практична в ра- [c.150]

    В методе меченых атомов особое значение приобретают реакции изотопного обмена, т. е. реакции, в результате которых происходит перераспределение изотопов одного и того же элемента между его различными физическими формами или химическими соединениями. Наиболее простой случай — это изотопный обмен атомов или молекул вещества, обладающих различным физическим состоянием. Например, в результате кинетического обмена молекул между твердой и газообразной фазами углекислого газа удельная активность каждой фазы будет меняться до установления равновесия [c.136]

    Е. Тило отмечал отсутствие склонности неорганических ВМС к кристаллизации и то, что они в основном находятся в аморфном, часто даже в стеклообразном (твердом аморфном) состоянии. Кристаллизуемость макромолекул, особенно пространственных, затруднена. Отмечалось также, что простые вещества (8е, Те, Р, Аз, 8Ь, В) при низких температурах переходят в высокомолекулярное стеклообразное состояние, а при высоких температурах для них характерно кристаллическое состояние. В их структуре содержатся группы 8ее, Тег. Р4, Аз4, 8Ь4. В1г. Газообразные молекулы Зев. Ря, Аз и жидкие молекулы Рп переходят вначале в стеклообразные, а затем в кристаллические формы 8е и Те (гекс.), Р (мнк и ромб.), Аз (ромб.) Аз, 8Ь и В1 (триг.),. Межатомные расстояния между их структурными элементами (цепи и сетки) в 1,12 (для В1) и 1,57 (для ромб. Р) раз больше, чем внутри этих элементов. Валентные углы внутри цепей и сеток также различны от 94 до 103°. [c.48]

    Большинство молекул состоит из двух или более различных атомов, но иногда несколько атомов одного элемента могут соединиться между собой и образовать молекулу этого элемента. Чаще всего это происходит тогда, когда элементы при комнатной температуре представляют собой газы (кислород, водород, азот, хлор). Такие газы всегда существуют в молекулярной форме, и в свободном состоянии их молекулы содержат по два атома данного элемента. Примером может послужить кислород, молекула которого представлена на рис. 27. Кислород, как и большинство газов, встречается в природе в молекулярной форме. Такого рода сочетание атомов очень важно учитывать в химических реакциях, в результате которых образуются газообразные молекулы, например кислорода или водорода. [c.39]

    Таким образом, каждый ряд Системы содержит элементы с разными наборами внешних электронов в наружных слоях атомов, с разными ионизационными потенциалами и сродством к электрону и различными формами соединений. Тем не менее, все же он имеет свою общую характеристику по сходству, вытекающему из качественно одинакового набора используемых вторых квантовых чисел, определяющих симметрию молекул и кристаллов и координационные числа. Отсюда возникают и типичные формулы комплексных химических соединений, структура молекул и кристаллов и, отчасти, термическая устойчивость и кинетические характеристики соединений. В то же время накопление внутренних электронных слоев увеличивает отталкивательные силы, удлинение межъядерных расстояний и в связи с этим монотонное, постепенное исчезновение ря-связей и летучих мономерных молекул. При переходе к элементам 4-го ряда уже в атомах присутствуют d-электронные оболочки, обусловливающие появление тяжелых тугоплавких металлов, расщепление термов полем лиганд, располагающихся вокруг центрального атома с симметрией, отличной от симметрии электронных орбиталей. С этим расщеплением связаны как окраска соединений d-элементов, так и характеристика многочисленных комплексных соединений как в растворах, так и в кристаллическом и газообразном состояниях. [c.337]


    В ковалентных соединениях (молекулах, сложных или молекулярных ионах) неодинаковых атомов (разных элементов) имеет место большая или меньшая полярность химических связей. Эту полярность характеризуют количественно степенью ионности соединения, рассчитываемой различными способами, и представляют эффективным зарядом атома в соединении. Так, состояние атомов в кристаллах гидрида лития может быть выражено формулой в молекулах ННз— —Ы-ол Н+о. ВРз—В+О р-о. Т1С1з—Т1-н).б1С1-о-в и т. п. В общей форме состояние атомов в подавляющем большинстве соединений (как в твердых телах, так и в газообразной и жидкой фазах) представляется символически в виде А+ В , где б частичные, эффективные, или парциальные заряды атомов, мера частичной ионности ковалентного соединения, величина, меньшая единицы. Известно, что реальные химические связи имеют [c.26]


Смотреть страницы где упоминается термин Различные формы элементов в газообразном состоянии: [c.128]    [c.155]    [c.272]    [c.92]   
Смотреть главы в:

Аллотропия химических элементов -> Различные формы элементов в газообразном состоянии




ПОИСК





Смотрите так же термины и статьи:

Состояние газообразное



© 2025 chem21.info Реклама на сайте