Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислые соединения из нефтяных фракций

    Кислородные соединения. Основная часть кислорода, находящегося в нефти, входит в состав смолистых веществ, и только около 10% его приходится на долю кислых органических соединений — карбоновых кислот и фенолов. Нейтральных кислородных соединений в нефтях очень мало. В свою очередь среди кислых соединений преобладают соединения, характеризующиеся наличием карбоксильной группы, — нефтяные кислоты. Содержание фенолов в нефтях незначительно (до 0,1%). Исследование строения нефтяных кислот, выделенных из светлых фракций, показало, что карбоксильная группа чаще всего связана с остатками циклопентано-вых и иногда циклогексановых углеводородов и значительно реже с парафиновыми радикалами. В более высококипящих фракциях найдены полициклические кислоты с циклопарафиновыми, ароматическими и гибридными радикалами.  [c.33]


    Помимо кислот и фенолов в светлых дистиллятах присутствуют серосодержащие соединения, часть которых реагирует со щелочами и может быть извлечена. К этим соединениям в первую очередь относится сероводород. Он присутствует в легких дистиллятах в растворенном состоянии, а также образуется при взаимодействии элементной серы с парафиновыми и нафтеновыми углеводородами и при разложении высококипящих серосодержащих соединений в процессах перегонки нефти или крекинга нефтяных фракций. Сероводород реагирует с раствором едкого натра с образованием при избытке щелочи—сернистого натрия, при недостатке — кислого сернистого натрия  [c.53]

    При сернокислотной очистке некоторых нефтяных фракций получают ценные побочные продукты. Бензин и керосин обрабатывают серной кислотой для удаления сернистых и азотистых соединений. При этом происходит полимеризация, а также в некоторой степени сульфирование углеводородов. Образующийся в результате сернокислотной очистки кислый гудрон обычно подвергают переработке с целью выделения из него смеси углеводородов и серной кислоты. [c.398]

    Для извлечения из нефтяных фракций сульфидов многие исследователи пользовались водным раствором ацетата ртути, так как образующиеся комплексы сульфидов алифатического и цикланового строения растворимы в воде. Таким методом были получены сульфиды из иранской нефти [51]. Смесь сернистых соединений и ароматических углеводородов, выделенная из разбавленного водой кислого гудрона тракторного керосина иранской нефти, ректифицировали. Узкие фракции обрабатывали водным 0,7—1,0 М раствором ацетата ртути. К водному слою для разложения растворимых комплексов сульфидов добавляли горячий 5 н. раствор соляной кислоты. Сульфиды отделяли от водного слоя и нейтрализовали раствором щелочи. Производные тиофена, присутствовавшие во фракции, не растворялись в водном слое, а оставались в сернисто-углеводородной фазе. [c.119]

    Производство компонентов из исходных масляных фракций — сложный многоступенчатый процесс. Основное назначение каждой ступени — полное или частичное удаление определенных групп соединений, отрицательно влияющих на эксплуатационные свойства масел. Из нефтяных фракций необходимо удалять все кислые соединения, непредельные углеводороды, частично сернистые и смолистые соединения, полициклические ароматические углеводороды с короткими боковыми цепями, твердые парафины. [c.322]


    Прочие реакции серной кислоты с компонентами нефтяных фракций. Имеюш,иеся в составе нефти азотсодержащ,ие соединения взаимодействуют с серной кислотой, образуя сульфаты, переходящ,ие в кислый гудрон. Нафтеновые кислоты частично растворяются в серной кислоте, а частично сульфируются, причем карбоксильная группа нафтеновых кислот при сульфировании не разрушается. Продукты взаимодействия нафтеновых и серной кислот ослабляют эффективность действия серной кислоты на другие соединения, поэтому целесообразно перед сернокислотной очисткой предварительно удалить из очиш,аемого продукта нафтеновые кислоты. [c.398]

    ЭКСТРАКЦИЯ И ОЧИСТКА КИСЛЫХ СОЕДИНЕНИЙ ИЗ НЕФТЯНЫХ ФРАКЦИЙ [c.280]

    Природные нефтяные смолы содержат как нейтральные, так и кислые соединения, причем первые значительно преобладают. В виде смолистых веществ представлена большая часть всех гетеро-органических соединений, присутствующих в топливах. В табл. 14 приведена характеристика смолистых веществ, выделенных адсорбцией из топлив и топливных фракций. Состав и свойства нейтральной и кислой частей смолистых веществ керосина можно видеть из данных табл. 15. [c.45]

    Прочие реакции серной кислоты с компонентами нефтяных фракций. Имеющиеся в составе нефти гзотистые соединения взаимодействуют с серной кислотой, образуя сульфаты, переходящие в кислый гудрон. Нафтеновые кислоты частично растворяются в серной кислоте, а частично сульфируются, причем карбоксильная группа нафтеновых кислот при сульфировании не разрушается. Продукты взаимодействия нафтеновых 1 серной кислот ослабляют эффективность действия серной кислогы на другие соединения, поэтому целесообразно перед сернокислотной очисткой предварительно удалить из очищаемого продукта нафтеновые кислоты. Условия очистки. Технологический режим сернокислотной очистки зависит от ее назначения. Дли очистки, имеющей целью удаление смолистых веществ из мaзo ныx масел, повышение качества осветительных керосинов, удаление сернистых соединений, применяют 93% кислоту. При деароматизации используется 98% кислота или олеум. Легкая очистка бензина, предназначенная для улучшения цвета или удаления азотистых оснований, проводится серной кислотой с концентрацией 85% г ниже. Применение разбавленной кислоты там, где это возможно, предпочтительнее, так как кислый гудрон образуется в меньших количествах, ослабляются процессы полимеризации. [c.317]

    На ассоциацию сульфидов средних и высших фракций нефти с конденсированными ароматическими углеводородами недавно было обращено внимание в работе Крейна и Рубинштейна и сотр. [15]. Гетероциклические азотистые основания нефти полностью представлены ароматическими системами. По-видимому, их донорно-акцепторное взаимодействие с сульфидами нефти, представленными преимущественно тиацикланами, осуществляется легче, чем взаимодействие сульфидов с ароматическими углеводородами. Существованием ассоциатов, вероятно, объясняется приуроченность гетероатомных соединений к смолистым компонентам нефти. С увеличением молекулярного веса нефтяных фракций и усложнением структур входящих в них соединений вероятность образования таких ассоциатов увеличивается. Можно предположить, что в широкой фракции не менее 40% азотистых оснований находится в виде подобных комплексов. В сырых нефтях в виде крупных ассоциатов, по-видимому, находится не менее 50% азотистых оснований. Размеры ассоциированных частиц настолько велики, что они не сорбируются катионитами. Неполная сорбция оснований из газойля и легкого масла, отмеченная в работах [6, 7], вероятно, также связана с существованием ассоциатов. В присутствии уксусного ангидрида— полярного растворителя с кислыми свойствами — происходит разрушение ассоциатов (вероятно частичное), азотистые основания оказываются свободными, либо связанными в частицы меньшего размера, которые могут сорбироваться на катионите. [c.128]

    Смолистые веи ества, или нефтяные смолы, представляют собой полициклические, слабо конденсированные ненасыщенные кислород-, азот- и серосодержащие соединения нафтено-арома-тического строения с молекулярным весом от 400 до 1000 [6] состав и строение их непостоянны. Нефтяные смолы имеют консистенцию от тягучих жидкостей до твердых тел от коричневого до черного цвета они растворимы в нефтяных фракциях, хлороформе и частично в этиловом спирте и этиловом эфире. Содержание в них серы и азота достигает 3%, а кислорода — до 10%. Некоторые нефтяные смолы обладают кислой реакцией. При длительном окислении и нагревании они превращаются в асфальтены. Содержание смолистых веществ в нефтяном и коксохимическом сырье для производства сажи колеблется от 1 до 10%. [c.8]


    Впервые использованные в нефтяном анализе лишь 20 лет назад ионообменные процессы [113] стали сейчас важным способом выделения и фракционирования кислых и основных соединений из нефтей и нефтяных фракций, вытесняюш им из аналитической практики методы кислотной и ш,елочной экстракции. Большой интерес вызывает проведение этих процессов в системе с неводным элюентом, при котором исчезает барьер растворимости и исключается возможность гидролиза образующихся солей. Смещение реакции в неводных средах в сторону со-леобразования обеспечивает удерживание в слое сорбента даже очень слабых оснований (piTh,g 9—14) [114]. Благодаря специфическому взаимодействию с поверхностью на ионитах могут делиться и некоторые неионогенные соединения [115]. [c.16]

    Применив для выделения соединений кислого характера из высококипящих нефтяных фракций ионный обмен на крупнопористом анионите Амберлист А-29-вместо щелочной экстракции, авторы работы [129] получили концентраты, содержавшие карбоновые кислоты, фенолы, карбазолы и амиды. Доля фенолов среди этих кислых веществ была не ниже 15% в ряде дистиллятов она составляла более 80% суммы кислот и фенолов и, как видно на. примере фракций из двух нефтей (Гэто Ридж и Риклюз), повышалась с ростом температуры выкипания (табл. 3.6). [c.90]

    Кислотное число. Кислотность нефтп обусловлен наличием в пей нафтеновых кислот и в значительно меньшей степени — других кислых соединений, нанример фенолов. Нафтеновые кислоты концентрируются преимуш,ественно в керосино-газойлевых фракциях нефти. Общее содержание нафтеновых кислот невелико и зависит от общего химического состава нефти в нафтеио-арома-тических нефтях нафтеновых кислот больше, чем в парафини-стых. Нафтеновые кислоты являются нежелательным компонентом масляных фракций вследствие своей коррозионной агрессивности. Кислотное число нефти выражается в миллиграммах КОН, пошедших на нейтрализацию 1 г нефти (ГОСТ 5985—59), и составляет для большинства нефтей десятые и сотые доли мг КОН/г лишь для некоторых бакинских нефтей (Нефтяные камни, артемовской) кислотное число достигает 1—3 мг КОН/г. [c.63]

    Кислородсодержащие соединения. Проблема выделения кислородсодержащих соединений из нефтяных фракций наиболее полно разработана для соединений кислого характера (кислот, фенолов), но недостаточно для нейтральных соединений (пероксидов, спиртов, эфиров, альдегидов, кетонов и иолигетероатомных соединений). Нейтральные соединения выделяются из смесей с углеводородами хроматографически, однако в концентраты наряду с кислородсодержащими попадают сбру- и азотсодержащие соединения. [c.91]

    Очистку нефтяных фракций серной кислотой проводят для удаления из них непредельных, серо-, азотсодержащих и смолистых соединений, которые обусловливают малую стабильность топлив при хранении, нестабильность цвета и ухудщают некоторые эксплуатационные свойства. В обычных процессах очистки серная кислота не действует на парафиновые и нафтеновые углеводороды. Однако почти всегда в побочных продуктах процесса (кислых гудронах) эти углеводороды обнаруживаются, так как в присутствии сульфокислот и кислых эфиров серной кислоты эти углеводороды образуют эмульсии, увлекаемые продуктами очистки. Ароматические углеводороды не одинаково легко подвергаются сульфированию. Степень их сульфирования зависит от расположения алкильных групп. Трудность сульфирования ароматических углеводородо1в возрастает с увеличением длины и числа боковых цепей. Полициклические иафтено-ароматические углеводороды подвергаются сульфированию при большом расходе кислоты. [c.60]

    Под термином нефтяные сульфокислоты понимаются сульфоновые кислоты, образующиеся в результате непосредственного сульфирования природных, в основном ароматических и нафтено-ароматических соединений, находящихся в различных нефтяных фракциях (или выделенных из них). Сульфокислоты, остающиеся в сульфированной нефтяной фракции (кислом масляном слое), получили название маслорастворимые , а также красные (цвета красного дерева) сульфокислоты, переходящие в кислый гудрон (кислотный слой), получили наименование водорастворимые или, точнее, маслонерастворимые , а также зеленые  [c.120]

    Функциональный анализ хрсиатографических фракций, выделяемых гексаном, показал полное отсутствие соединений кислого характера, а такке то, что в этих фракциях концентрируются соответственно 99 и 89 %отн. азот- и серусодержащих соединений ino данным элементного анализа), что свидетельствуют о высокой селективности метода по отношению к нефтяным КС кислого характера Кислород фракций, полуаетшх гексаном и толуолом, доля которого составляет 48 отн. от общего содержания в деасфальтиэате, очевидно принадлежит слабополярным нейтральным или слабокислым КС. [c.122]

    Прочность межфазной пленки на границе раздела нефть — вода зависит не только от состава и свойств содержащихся в нефти эмульгаторов, но и от pH водной фазы. Обычно в водной фазе нефтяной эмульсии содержатся ионы соединений, которые оказьшают влияние на свойства адсорбированной пленки. Для каждой системы сырая нефть - вода существует оптимальный интервал pH, в пределах которого адсорбционный слой проявляет минимальные стабилизирующие свойства. Влияние pH водной фазы на прочность межфазной пленки объясняется тем, что полярные фракции нефти содержат кислотные и основные группы, а следовательно, pH водной фазы влияет как иа количество, так и на тип веществ, образующих межфазную пленку. Исследования позволили установить, что жесткие межфазные пленки, образованные асфалыенами, более прочны в кислой среде, менее в нейтральной и становятся очень слабыми или превращаются в подвижные пленки в щелочной среде. Асфальтены обладают как кислотными, так и основными свойствами в кислой среде они проявляют основные свойства, в щелочной - слабокислотные. Эмульгирующие свойства асфальтенов выше в кислой среде, а смол — в щелочной среде, поэтому прочность эмульсий, стаоилизированных одновременно смолами и асфальтенами изменяется в зависимости от pH водной фазы. [c.25]

    Широко применяемый в настоящее время потенциометрический метод определения свободных кислот (кислотных чисел) в нефтях, нефтяных фракциях и нефтепродуктах основан на реакции нейтрализации карбоксильной группы. В качестве тит-ранта используется гидроксид калия или натрия и смешанный растворитель спирт — бензол (1 1 по объему), [44]. Однако в такой системе титруются кислые соединения, у которых значения кислотностей рКа равны 10 и менее (сильные карбоновые кислоты, производные фенолов с электроноакцепторными зад1естителя-ми и т. п.). Слабые высокомолекулярные кислоты, фенолы (в том числе стерически затрудненной структуры) в таких системах не титруются. Для определения слабокислых соединений нефти в последнее время стали использовать метод, основанный на титровании гидроокисью тетрабутиламмония (ТБАГ) в дифференцирующем растворителе пиридин — толуол (1 1 по объему) [45]. [c.48]

    Схему выделения, разделения и исследования нефтяных кислот разработал Зайферт [194], Кислые соединения экстрагирую кз нефти спиртовым раствором едкого натра. Двухступенчатой ионообменной хроматографией их разделяют на четыре фракции фенолы, кислоты и две смешанные фракции, содержащие наряду с кислотами их производные и фенолы. Чистые карбоновые кислоты восстанавливают с помощью гидрида лития -алюминия в углеводород. Продукт восстановления разделяют жидкостной хроматографией иа нейтральном оксиде алюминия на ряд фракций (рис. 45), одну из которых, содержащую моно- и биароматические соединения, разделяют на кислом оксиде алюминия. Выделе1шые при разделении фракции анализируют различными методами с целью определения их химического состава. На основании полученных результатов можно судить о химическом строении кислот, содержащихся в нефти. [c.128]

    В неочищенных нефтяных фракциях содержатся ненасыщенные соединения, склонные к осмолению. Их можно З далить очисткой концентрированной серной кислотой, которая присоединяется по месту двойных связей, образуя растворимые кислые эфиры серной кислоты. Для этого нефтепродукты смешивают с концентрированной серной кислотой в конических освинцованных сосудах. Темная отработанная кислота оседает вниз, оставшийся нефтепродукт промывают водой, едким натром и еще раз небольшим количеством воды. При таком методе очистки расходуется большое количество реагеитов и неизбежны большие потери продукта. Поэтому целесообразнее применять физические методы очистки, например адсорбцию отбеливающими землями, силикагелем и активированным углем. Однако способом адсорбции можно удалить высокомолекулярные окрашенные примеси, но не осмоляющиеся ненасыщенные углеводороды. [c.136]

    Смолистые вешества реагируют с серной кислотой в трех направлениях (по исследованиям ГрозНИИ). Часть смол растворяется в серной кислоте без видимых изменений, другая—коп-денсируется с образованием веществ, подобных асфальтенам, из третьей части смол при действии серной кислоты образуют я сульфокислоты. Все эти виды смол переходят в кислый гудрон. При очистке нефтяных фракций серная кислота в основном деГг-ствует на непредельные соединения и асфальто-смолистые вешества. [c.74]

    Хотя этот тип реакций не имеет препаративного значения, однако в некоторых случаях он представляет практический интерес. Образование кислого гудрона при сульфировании нефтяных фракций частично происходит сходным образом [148]. Адгезионная способность полиэтилена и его способность воспринимать печать улучшаются при окислении и сульфировании поверхности очевидно, реакции протекают главным образом по третичным углеродным атомам. Из многих патентов, в которых предлагаются различные условия реакции для достижения указанного эффекта, можно привести два наиболее типичных. В одном — полиэтиленовый материал обрабатывается 3%-ным олеумом при 50° С [468] в другом — полиэтилен смачивается при комнатной температуре раствором SO3 в тетрахлорэтилене [145]. Было найдено, что для пленки полиэтилена низкого давления лучшим сульфирующим агентом является хлор-су.тьфоновая кислота [457]. Хотя алканы реагируют с SO3 и не смешиваются с ним, однако реакция протекает достаточно медленно, и поэтому алканы могут применяться в качестве растворителя при сульфировании других, более легко реагирующих соединений, особенно при низких температурах в качестве подобных растворителей применяли .-бутан [39] и к-гексан [150]. [c.41]

    Непременным условием рационального использования каждого химического сырья является, несомненно, знание его химического состава. Кислые гудроны представляют собой весьма сложную смесь, состав которой находится в зависимости от химической природы очищаемой нефтяной фракции, условий очистки (в частности, от крепости серной кислоты и температуры процесса) и отчасти от продолжительности хранения самих кислых гудронов. Кроме избыточной серной кислоты, посторонней и реакционной воды, кислые г дроны содержат органическое вещество, состояц],б( из увлеченного нефтепродукта и разнородных продуктов реакции серной кислоты с углеводородами, кислородными, серНйстыми и азотистыми соеДй--нениями нефти. Следовательно, органическая масса представляет собой очень сложную и разнообразную смесь органических соединений, каждая группа которых, в свою очередь, является смесью различных классов химических соединений. Несмотря на то, что кислые гудроны уже много десятилетий являются постоянным побочным продуктом производства, групповой химический состав их органической массы до сих пор изучен недостаточно из-за отсутствия правильного метода ее исследования. [c.308]

    Наименее исследованной группой заключающихся в нефти соединений являются асфальтовые и смолистые вещества — важнейшие компоненты природных и искусственных асфальтов. Главная масса этих веществ содержится в так называемом гудроне — вязкой, смолистой массе, остающейся после выделения из нефти легких и масляных фракций. Этот гудрон и по составу, и по своим свойствам очень напоминает природный асфальт и состоит в основном из остатков неотогнанных масел, нейтральных нефтяных смол и асфальтенов и кислых нефтяных смол (асфальтогеновые кислоты). [c.97]

    Позднее Дж. Маккей и сотр. [129], исследуя кислые компоненты фракций 370—535° и 535—675°С из различных нефтей, в том числе и из не оти того же месторождения Уилмингтон, подтвердили наличие в нефтях гидроксисоединений с внутримолекулярной водородной связью и указали, что эти соединения должны относиться скорее к ряду производных о-фенилфенола (ЫХ). Однако они нашли, что даже в фенольном концентрате из нефти Уоссон (Техас), проявлявшем аномально высокое поглощение при 3542 см в ИК спектре, содержалось больше компонентов с 2 = = 10 и 12, чем любых других соединений. Какие именно вещества составляют ряд г = 12 —нафтолы или тринафтенофенолы,— к сожалению, не установлено. Основные выводы этих авторов [129] о составе нефтяных фенолов, выкипающих в пределах 400—500 С, сведены к следующим 1) большая часть этих веществ — свободные фенолы, поглощающие в ИК области спектра при 3585 см- (в метиленхлориде) 2) фенолы с внутримолекулярной водородной связью содержатся обычно в меньших количествах, чем свободные фенолы 3) молекулярные массы изученных фенолов колеблются от 225 до 425 ед. 4) содержание алкилфенолов (г = 6) невелико 5) среди фенолов значительно преобладают соединения, содержащие в молекуле насыщенные циклы с алкильными заместителями 6) с ростом числа ароматических колец в молекулах фенолов доля углерода в алкильных заместителях снижается. [c.107]

    Поверхностное натяжение асфальтенов такое же, как и смол [109]. Величина диэлектрической проницаемости асфальто-смо-листых структур тяжелых нефтяных остатков характеризует степень их полярности. Этот показатель повышается с увеличением содержания в остатках серы, кислорода, азота, кислых и нейтральных омыляемых компонентов, т. е. полярных групп. Некоторые сераорганические соединения бензиновых и керосиновых фракций изучены [183, 184]. Но надежных методик для детального исследования структуры серусодержащих соединений высокомолекулярной части еще нет. Пока установлерп тг. общее содержание, сепаорганических соединений возрастает с повышением молекулярного веса фракций. В мазутах их сосре-доточено до 70 — 90% от общего содержания в нефти. [c.13]


Смотреть страницы где упоминается термин Кислые соединения из нефтяных фракций: [c.35]    [c.138]    [c.370]    [c.246]    [c.122]    [c.128]    [c.352]    [c.70]    [c.246]    [c.87]    [c.18]    [c.102]    [c.308]    [c.176]   
Нефтехимическая технология (1963) -- [ c.280 ]




ПОИСК







© 2025 chem21.info Реклама на сайте