Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Меди, каталитическое действие

    Педерсен [85] предполагает следующий механизм каталитического действия меди при окислении топлив. Реакция между перекисями и антиокислителем очень ускоряется в присутствии меди, тогда как в обычных условиях эта реакция идет сравнительно медленно. Каталитическое действие оказывает только металлическая или одновалентная медь в результате реакции образуется двухвалентная медь, не обладающая каталитическими свойствами. Двухвалентная медь в присутствии антиокислителя восстанавливается. до одновалентной, и каталитическое действие меди возобновляется. [c.251]


    Окисление проводят при 100 °С и избыточном давлении 2,4 ат. Расход воздуха равен 110 на 7 сточных вод. Концентрация ионов катализатора (Си " ) должна составлять 30-10 %. Ката лизатор подается в виде хлорида меди. Каталитическое действие ионов железа значительно слабее действия ионов меди. Предложен следующий механизм каталитического действия солей меди  [c.251]

    В данной работе исследовались кинетика и механизм гидратации ацетилена в присутствии сульфатных комплексов меди. Каталитическое действие суль- фатных комплексов меди в реакции гидратации ацетилена изучалось ранее I [1—3], однако механизм действия катализатора еще недостаточно ясен. [c.228]

    Разложение перекиси водорода стеклянной ватой (адсорбент и катализатор) Соли и тяжелые металлы, например марганец и медь Каталитическое действие пропорционально количеству адсорбированного активного вещества 25 [c.139]

    Каталитическое хлорирование. Галоидирование парафинов катализируется углеродом, металлами, солями металлов и соединениями, разлагающимися с образованием свободных радикалов. К последним относятся тетраэтилсвинец, гексафенилэтан и азометан, действие которых заключается в инициировании свободно-радикальной цепи. Такие металлы, как медь, по-видимому, частично превращаются в хлориды, являющиеся эффективными катализаторами. Для различных реакций хлорирования применялись хлориды меди, церия, железа, сурьмы, алюминия и в меньшей степени титана и олова. Каталитическое действие их усиливается при нанесении соли металла на сильно развитую поверхность, например на. стекло, пемзу, окись алюминия или силикагель. [c.62]

    В 1939 г. была опубликована первая работа о деактивирующих присадках, препятствующих каталитическому действию растворенной меди на смолообразование в бензинах [84]. Авторы этой работы показали, что механизм действия деактиваторов металла принципиально отличается от механизма действия обычных антиокислителей. Достаточно сказать, что эффективный деактиватор может вообще не обладать антиокислительными свойствами. На [c.251]

    Каталитический крекинг-процесс отличается от термического тем, что пары углеводородов перерабатываемого сырья пропускают над катализатором, т. е. веществом, которое ускоряет и направляет ход реакций, при этом получаются продукты более качественные, чем при термическом крекинге. В настоящее время в качестве катализатора наиболее широко применяются алюмосиликаты, которые содержат около 70—80% 5102, 10—18% А Оз. Для повышения каталитического действия алюмосиликатов в них добавляют также окислы железа, никеля, меди и других металлов. [c.8]


    Проведенные исследования показывают, что в состав масел входят вещества, резко различающиеся по каталитическому воздействию на окисляемость углеводородов. Очень важно, например, установить оптимальное соотношение смолисто-ароматических веществ в компрессорных маслах. Обессмоливание масла в некоторых случаях приводит к переходу медленного процесса его окисления во взрыв [61]. Каталитическое действие на окисление масел оказывает также присутствие некоторых металлов меди, свинца, железа, окиси железа [10]. [c.70]

    Окисление масел значительно ускоряется в присутствии металлов или других веществ, каталитически действующих на окисление. Одни металлы (медь, железо, свинец) ускоряют окисление другие (алюминий, олово) или же не оказывают никакого влияния, или даже тормозят окисление. [c.160]

    Каталитическое действие металлической меди на окисление дизельного топлива с пониженным содержанием серы [c.124]

    Из ЭТИХ трех форм окись меди (I), по литературным данным, является специфическим, селективно действующим катализатором для окисления пропилена в акролеин. Окись меди (II) оказывает каталитическое действие на реакцию полного окис.пения пропилена в СОа, металлическая медь неактивна. [c.98]

    Димер одновалентной меди необходим предположительно для каталитического действия, потому что для компенсации энергии диссоциации [c.300]

    В данном разделе рассмотрено каталитическое действие металлической меди на окисление дизельного топлива кислородом и влияние содержания серы на окисляемость дизельного топлива. Исследовано влияние адсорбционной очистки, при которой удаляются смолистые вещества и микропримеси, происхождения и сорта дизельного топлива на его окислительную стабильность. Сделана оценка стабильности дизельного топлива по результатам изучения кинетики поглощения О2 с одновременной регистрацией оптической плотности топлива. Рассмотрена кинетика накопления первичных продуктов окисления дизельного топлива. Сопоставлены показатели термоокислительной стабильности дизельных и реактивных топлив, получаемых с применением гидрогенизационных процессов. На базе кинетической модели окисления проведено прогнозирование допустимых сроков хранения дизельного топлива с пониженным содержанием серы при контакте с металлической поверхностью. [c.123]

    Наибольшее каталитическое действие оказывает медь. Она снижает индукционный период на 70—80%. Несколько меньшую каталитическую активность проявляет латунь. В ее присутствии ин-16 , 243 [c.243]

    В отсутствие антиокислителя в бензине накапливается двухвалентная медь, которая не восстанавливается и поэтому каталитического действия ее не наблюдается. [c.251]

    Органические соли меди, железа, кобальта в результате каталитического действия на окисление масел способствуют накоплению в них кислых, коррозионио Присутствие катализаторов снижает эффективность вносимых в масло ингибиторов окисления. В качестве гомогенных катализаторов жидкофазного окисления нефтепродуктов часто используют карбоксилаты металлов (стеараты, нафтенаты и др.) [102]. [c.77]

    В результате замыкания координационных связей концевых гетероатомов образуется два пятичленных кольца. Соединения такого типа обладают большей эффективностью, чем соединения с одним гетероатомом, и в их присутствии каталитическое действие меди на окисление бензинов значительно уменьшается. [c.252]

    Мы провели несколько экспериментов (табл. 2) в совершенно одинаковых условиях, которые позволили сделать уже отмеченный в литературе вывод, что в качестве катализаторов реакции между этиленом и серной кислотой целесообразно применять серебро, железо, ванадий и медь, а в промышленных масштабах — только железо и медь. Оба металла по каталитическому действию значительно уступают серебру, но экономически они намного выгоднее. Однако использование их не может решить проблемы, следовательно,, нужно стремиться к отысканию новых возможностей. Одной из них является повышение давления. [c.22]

    Расход многих антиокислительных присадок резко возрастает в присутствии катализаторов окисления — главным образом меди и ее сплавов [ 176]. Поэтому за рубежом для подавления каталитического действия металлов в топлива вводят деактиваторы металлов. В отечественных реактивных топливах деактиваторы металлов не применяют. [c.197]

    На скорость окисления масел в двигателях существенное влияние оказывают металлы, из которых изготовлены детали двигателя сталь, медь, свинец, цинк, олово, алюминий, кадмий, серебро, никель, хром и др. Некоторые из этих металлов оказывают явное каталитическое действие на процесс окисления масел, другие действуют слабо. Сильнейшими катализаторами окисления являются железо и медь, а также их соединения. Глубокому окислению способствуют и продукты первичного окисления компонентов масла. Они тоже могут взаимодействовать с металлами, давая вещества, в свою очередь ускоряющие процессы окисления. Было, например, установлено, что каталитической активностью обладают соли нафтеновых кислот, особенно нафтенаты свинца и меди. [c.14]


Рис. 25. Эффективность деактиватора металла в подавлении каталитического действия меди [2] (восстановление индукционного периода при совместном действии антиокислителя и деактиватора металла) Рис. 25. Эффективность <a href="/info/398802">деактиватора металла</a> в подавлении каталитического действия меди [2] (восстановление <a href="/info/107577">индукционного периода</a> при <a href="/info/355154">совместном действии</a> антиокислителя и деактиватора металла)
    Каталитическое действие олеата меди на окисление топлива сводится к ускорению распада гидропероксида на радикалы под влиянием ионов меди [75, 77, 78]. Скорость распада гидропероксидов топлива Т-б на радикалы (к ), измеренная с помощью ингибитора — ионола — по периоду индукции (т = 2[1пН]о/Ш ), зависит от концентрации олеата меди [62]  [c.73]

    Каталитическое действие солей ртути и меди на реакцию гидрохлорирования объясняют образованием координационных комплексов, в которых ацетилен активируется и взаимодействует е хлор-анионами, причем промежуточно получаются переходные состояния с металл-углеродной связью или настоящие металлоорганические соединения, быстро разлагаемые кислотой  [c.133]

    Назначение. Деактиваторы (инактиваторы, пассивато-ры) металлов — это присадки, подавляющие каталитическое действие металлов на окисление топлив. Деактиваторы, как правило, добавляют к топливу совместно с антиокислителями в концентрациях, в 5—10 раз меньших, чем антиокислитель. Они могут быть также компонентами двух- и трехкомпонентных присадок [1 — 11]. Установлено, что металлы переменной валентности являются сильными катализаторами окисления углеводородных топлив [1—5, II —17]. Металлы постоянно контактируют с топливами — в нефтезаводской, перекачивающей аппаратуре и в двигателях, входят в виде микропримесей в их состав. В топливных дистиллятах обнаружено присутствие алюминия, берилия, ванадия, висмута, железа, золота, кремния, калия, кальция, кобальта, меди, молибдена, натрия, никеля, олова рубидия, серебра, свинца, стронция, титана, цинка и др. [18—21]. [c.122]

    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]

    Каталитическое действие металлической меди иа окисление дизельных топлив (120"С) [c.128]

    Значение энергии активации окисления топлива ДТ-23, контактирующего с медной поверхностью, на -90 кДж/моль меньше таковой для автоокисления аналогичного образца в отсутствие меди, что свидетельствует о каталитическом действии металла на окисление топлива. [c.130]

    Деактиваторы металлов добавляются в топлива для подавления каталитического действия активных металлов (например, меди), ускоряющих окисление углеводородов. [c.320]

    Длительное взаимодействие масла с кислородом воздуха при достаточно интенсивной циркуляции его в системе в совокупности с каталитическим действием металла (обычно железа и меди) обусловливает значительное [c.497]

    Некоторые деактиваторы металла, эффективно подавляющие каталитическое действие меди, не способны к комплексообразованию с другими металлическими катализаторами и иногда могут даже активировать металл. [c.127]

    Взаимодействие водорода и кислорода или сжигание водорода предполагалось предварительное восстановление окиси меди до закиси меди каталитическое действие закиси меди, по Ван Клеве и Райделу автор считает мало вероятным установлено, что окись меди не изменяется и образование активных центров закиси меди мало вероятно [c.37]

    Одним из путей подавления каталитической активности примесей металлов переменной валентности в процессах окисления является перевод их в неактивную форму за счет образования комплексов или хелатов. В качестве таких агентов могут применяться антиоксиданты, относящиеся к производным /г-фениленди-амина [30, 31], которые пассивируют каталитическое действие меди, марганца и железа в процессе окисления каучуков. Аналогичный эффект наблюдался при введении в высокомаслонапол-ненный бутадиен-стирольный каучук, содержащий повышенное количество меди и железа, таких антиоксидантов, как п-гидрокси- фенил-р-нафтиламин (параоксинеозон) или меркаптобензимидазол [31]. Достаточно эффективными пассиваторами меди в процессе окислительной деструкции каучуков является щавелевая кислота, аминобензойные кислоты, продукт конденсации бензальдегида с гидразином [41]. [c.631]

    В результате исследований Зандмейера было выяснено, что если разложение солей диазония не идет самопроизвольно, то его можно вызвать добавлением солей меди. Каталитическое действие этих солей объясняют тем, что они с солями диазония образуют двойные соединения типа eHsNa l СиСЬ или eHaN N u l, которые затем распадаются, как было указано выше. [c.116]

    Каталитическое действие ионов металлов на окисление масла подавляется соединениями другой группы антиокислительных присадок - деактиваторами металлов (metal dea tivators). В качестве деактиваторов применяются органические соединения (эти-лендиамины, органические кислоты), связывающие ионы металлов в неактивные комплексы. В последнее время в зарубежной литературе появились данные, что небольшое количество ионов меди в моторных маслах наоборот, является эффективным антиоксидантом и специально вводится в некоторые сорта масел. Этот момент следует учитывать при анализе работающих или отработанных моторных масел. [c.32]

    Детальные исследования по определению оптимальной концентрации деактиваторов для подавления каталитического действия металлов, встречающихся при хранении и применении автомобильных бензинов, показали, что увеличение концентрации от О до 0,010% почти пропорционально увеличивает химическую стабильность бензина, добавление деактиватора в концентрации свыше 0,010% малоэффективно, так как лишь незначительно улучшает стабильность бензинов. Оптимальной концентрацией деактиваторов типа салицилиден-о-аминофенола и дисалицилиденэтилендиамина для химической стабилизации товарных автомобильных бензинов является 0,01%. Следует отметить, что если действие деактиватора заключается в том, что он связывает растворенные ионы металла, то можно предположить, что добавление деактиватора может вызвать увеличение степени растворения металла в бензине. Для проверки этого предположения были поставлены опыты по окислению бензина в присутствии меди с разным, заведомо большим, количеством деактиватора. Полученные результаты показывают, что присутствие деактиватора не вызывает увеличения степени растворения металла изменение массы медной пластинки при окислении бензина с разным количеством салицилиден-о-аминофенола показано ниже  [c.258]

    ВИЯХ хранения, транспортировки и применения. Результаты исследования показали, что такие деактиваторы металла, как салицил-иден-о-аминофенол, дисалицилиденэтилендиамин и некоторые другие, способны подавлять каталитическое действие меди, латуни, стали, олова, цинка, алюминия и других металлов. [c.257]

    Оптимальная концентрация деактиватора зависит от того, действие какого металла должно быть подавлено. Так, исследованная концентрация 0,010% недостаточна для подавления каталитического действия меди, оптимальна для латуни и, возможно, несколько велика для других исследованных металлов. Для подавления каталитического действия меди оптимальная концентрация дисалицилиденэтилендиамина равна 0,015%. [c.258]

    Скорость абсорбции увеличивается в присутствии различных солей, причем наиболее эффективными катализаторами являются сернокислая и хлористая соли закиси меди. В опытах при низких температурах катализаторы брались в количестве 1—5%. В присутствии 5% закиси меди этилен быстро абсорбируется 95%-ной серной кислотой при температуре 40°, образуя этилсерную кислоту с выходом 94%. В случае применения ртутного катализатора и соли закиси меди абсорбция происходит даже при более низких температурах. Эффективным катализатором является также сернокислая соль двухвалентной меди [180а]. В общей схеме [1806] удаления этилена из светильного газа путем абсорбции этилена кислотой крепостью 66° Вё в качестве катализатора предложено употреблять смесь 1% ртути с ванадиевой, урановой или молибденовой кислотами. В присутствии пенообразующего вещества каталитическое действие оказывают также коллоидное серебро и серебряные соединения [181]. Применяя катализаторы, можно вести абсорбцию при температуре реакционной смеси не выше 35° и таким образом избежать образования изэтионовой кислоты. Описана полупроизводственная абсорбционная установка [182], работающая с применением медного катализатора. Позднее [183] предложены некоторые другие соединения, ускоряющие процесс абсорбции. Катализаторы увеличивают только скорость абсорбции, но не влияют на ее полноту [184]. [c.35]

    Еще Вертело пытался ускорить реакцию между этиленом и серной кислотой, применяя в качестве катализаторов соли ртути. Фритцше [38] считал, что этилсерная кислота сама по себе достаточно акти1 ный катализатор. Это было подтверждено в работе [39]. В дальнейшем были изучены многие катализаторы [40, 41], причем наиболее эффективными оказались соли серебра, железа, меди и окислов ванадия. Действие солей в болынинстве случаев не зависит от аниона, но поскольку мы имеем дело с серной кислотой, рекомендуе -ся употреблять сульфаты (несколько отличаются друг от друга по действию соли одно- и двухвалентной меди). Иногда специфичность действия приписывается аммиачным солям [42] и циановым комплексам металлов [43], но, по нашему мнению, главная роль во всяком молекулярном комплексе принадлежит металлу (например, железу в соли Мора и ферроциановых соединениях). Различие может заключаться лишь в неодинаковом физическом состоянии катализатора в серной кислоте и в последующем изменении состояния с превращением части молекул серной кислоты в молекулы этилсерной кислоты или с введением влаги в серную кислоту. Сравнение действия различных катализаторов может привести к одним и тем же выводам кривые относительной интенсивности действия в ряду каталитических добавок приблизительно одного порядка. Абсолютные значения каталитического действия здесь не важны, поскольку они зависят от условий эксперимента. [c.22]

    Громадная зависимость выхода смол от материала выпарительной чашки недавно экспериментально проведена Бесполовым и Дегтяревой (632), причем подтвердились ранее известные данные о каталитическом действии меди. Полученные данные приведезЕы в табл. 37  [c.173]

    Следовательно, каталитическое действие стеарата меди на автоокисление топлива, по-видимому, связано с ускорением распада образующихся гидропероксидов на радикалы под влиянием катализатора. Зависимость величины Ь от температуры в интервале 100-130°С при [Си(С17Нз5СОО>2] = 5.4 Ю моль/л выражается уравнением Аррениуса  [c.110]

    При гетерогенном каталитическом окислении характеристиками удельной активности материала, обладающего каталитическим действием, служат величина Ъ/Ьд и отнощение (Ь - Ьо)/(Ьо8), где Ьо, Ь — количественная мера автоокисли-тельной активности топлива соответственно в отсутствие и в присутствии данного материала 8 — поверхность металла, см /л топлива [66]. Результаты проведенных исследований показали, что активность порощка меди по отнощению к дизельному топливу при 120°С составила 9.2 10"3 л/см , а отношение Ъ/Ьд 3 8 = 210 см /л. Аналогичные результаты были получены для меди в топливе Т-6 (5.0 10" л/см и Ь/Ьо = 2.51) [66]. [c.120]

    Наиболее активно ускоряет окисление масла медь. При покрытии поверхности медп лаковой пленкой каталитическое действие ее исчезает. [c.556]

    Методы испытания смазочных масел, применяемые в различных странах, как угке отмечалось выше, не учит1,1пают фактических условий, в которых находится масло при эксплуатации двигателя. Если испытания масел в лабораторных условиях нроводят( я при низких температурах, то температура, напрпмер, в верхних поршневых канавках двигателей Отто и Дизеля превышает 250°. Кроме того, необходимо учитывать каталитическое действие металла, который соприкасается с маслом во время работы двигателя. Сталь и стальные сплавы в два раза увеличивают скорость окисления масел при 250° по сравнению с медью и медными сплавами. Между тем при лабораторных испытаниях на окисление обычно применяют медные катализаторы. [c.590]

    Механизм действия противодымных присадок детально пока не выяснен, а имеющиеся данные весьма противоречивы. Д. В. Голотан [22] считает, что барий пре-пятствует дегидрагенизации молекул углеводородов и -тем самым снижает образование сажи, т. е. бариевые I присадки действуют на первой стадии этого процесса. Ряд авторов [19, 23] существенную роль в снижении сажеобразования при сгорании топлив отводит каталитическому действию ряда элементов, снижающих температуру сгорания углерода в воздухе. Известно, что свинец, медь, хром и некоторые другие метал так же как и барий, снижают температуру сгорания углерода другие же металлы, наоборот, несколько увеличивают сажеобразование. Опыты показывают, что натрий снижает температуру воспламенения углерода в воздухе на 248°, а барий — на 104°. Однако эффективность бария в снижении сажеобразования несравненно выше. [c.59]

Рис. 27. Подавление каталитического действия меди деактивато-ром металла при окислении реактивного топлива (110°С) Рис. 27. Подавление каталитического действия меди деактивато-ром металла при <a href="/info/395976">окислении реактивного</a> топлива (110°С)

Смотреть страницы где упоминается термин Меди, каталитическое действие: [c.243]    [c.111]   
Физика и химия поверхностей (1947) -- [ c.306 ]




ПОИСК







© 2025 chem21.info Реклама на сайте