Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тартратные комплексы

    Мешающее влияние вольфрама (VI) можно устранить, связывая его в тартратный комплекс. [c.491]

    Если исследуют металлический никель, то после его растворе-иия окисляют примесь железа (II) до железа (III) и добавлением винной кислоты связывают железо (III) в тартратный комплекс. Осаждению никеля в виде диметилглиоксимата мешают катионы железа, меди, алюминия, а также фосфат-, арсенат-, борат-, окса-лат-ионы. [c.311]


    Никель в тройном ацетате определяли диметилглиоксимом в щелочной среде в присутствии окислителя. При определении 0,5—2 мг натрия погрешность <0,028 мг натрия [39]. Меньшие количества натрия (0,02—1 мг) определяли с погрешностью 4% после связывания урана в цитратный или тартратный комплекс [528]. Б настоящее время эти методы практически не используют. [c.80]

    Методы кольцевой бани. Для разделения и обнаружения ЗЬ(1П) Аз(П1) и Зп(П) используют метод кольцевой бани, в котором указанные элементы разделяют на бумаге Ватман № 1 в виде тартратных комплексов с применением 60%-ного этанола в качестве проявителя [1524]. Описана [973, 1100] схема качественного анализа 20 катионов в одной капле раствора с использованием метода кольцевой бани. С применением соответствующих растворителей на бумажном фильтре получают 8 колец. В шестом кольце, содержащем ЗЬ, Аз и В1, разделяют эти элементы на зоны в виде диэтилдитиокарбаминатов с применением ацетилацетона в качестве проявителя. В другой схеме качественного анализа 26 катионов [917] их разделяют с помощью групповых реагентов (Н2З, НС1) на три группы, затем методом кольцевой бани каждую группу катионов разделяют на отдельные элементы и идентифицируют. Метод обеспечивает четкое разделение и идентификацию всех катионов при их содержании в капле > 2 мкг. [c.26]

    Полярография тартратных комплексов урана [c.185]

    Осадочная хроматография. Описаны методы разделения на колонках, содержащих диметилглиоксим в смеси с активированным углем или другими адсорбентами [98, 249]. Эти методы пригодны для разделения никеля и кобальта, в частности при анализе солей кобальта, содержащих небольшие количества никеля. Оптимальная величина pH раствора для разделения никеля и кобальта составляет 5—6, причем при связывании кобальта в тартратный комплекс можно отделить никель от кобальта при соотношении, равном или меньшем чем 1 1000. При пропускании раствора солей никеля и кобальта с pH 5—6 кобальт проходит в фильтрат или легко вымывается водой, а никель остается в колонке. Предложены и другие методы отделения кобальта от ряда элементов на колонках, содержащих гель агар-агара, пропитанный растворами фосфата калия, арсенита натрия, тетрабората натрия, силиката натрия [551, 1076]. [c.82]

    Метод позволяет определять кобальт в присутствии щелочноземельных металлов. Железо и алюминий мешают, однако эти ионы можно удержать в растворе и элиминировать их мешающее действие связыванием в салицилатные или тартратные комплексы. Катионы меди, кадмия, никеля, марганца и цинка образуют аналогичные осадки и нх необходимо удалить перед осаждением кобальта. [c.96]


    Ag, Hg(I) Тартратные комплексы 60%-ный этанол — [1494] [c.166]

    К раствору, содержащему кадмий и тартратные комплексы остальных металлов, прибавляют 1 М КаОН до pH около 9, нагревают до 60° С и при- [c.57]

    Муравьиную [37], винную [38], яблочную [34], миндальную [26, 34] кислоты, этиленгликоль [34], глицерин [34], маннит [34], глюконат кальция [34] определяют окислением взятым в избытке ацетатом свинца (IV). Этот метод применяют дпя определения глицерина в фармацевтических препаратах [35] и для определения тартрата в тартратных комплексах [38, 39]. [c.134]

    Однако если химическая реакция протекает с небольшой скоростью или если восстановленная форма находится в виде амальгамы, то на ртутном капельном электроде могут одновременно протекать электрохимические реакции восстановления и окисления. Это имеет место и в случае ионов и 8п +, если они связаны в цитратный или тартратный комплекс [потенциал полуволны цитратного комплекса меди, соответствующий восстановлению 2- -0, равен —0,25 в, а потенциал полуволны комплекса олова, соответствующий окислению 2 -> 4, равен — 0,48 в (н. к. э.) при pH 7]. В этом случае на полярограмме получаются две отдельные волны. На рис. 82 кривая / соответствует восстановлению двухвалентных ионов меди из цитратного комплекса, а кривая 2 — окислению из соответствующего комплекса до Если в растворе в равных концентрациях одновременно находятся ионы и 5п +, связанные в комплекс, то получается кривая 3 (сплошная), которая представляет собой алгебраическую сумму кривых и. 2. В данном случае первая волна кривой 3, соответствующая восстановлению Си, расположена ниже нулевой линии гальванометра, т. е. на анодной стороне, вторая же волна кривой 3, соответствующая окислению комплекса находится выше нулевой линии гальванометра, т. е. на катодной стороне. В области потенциалов между точками Л и В на кривой 3 наблюдаемый ток равен нулю при этом на ртутном капельном электроде одновременно протекает окисление и восстановление. [c.175]

    В котором 2п2+ образует аммиачные комплексы, а во втором — тартратный буферный раствор, в котором РЬ + содержится в,виде растворимых тартратных комплексов. [c.273]

    К пробе из раствора после титрования меди добавляют винную, аскорбиновую кислоту, K N и избыток аммиака. Полученный раствор, Б котором свинец содержится в виде тартратных комплексов, титруется комплексонометрически,. при этом цинк остается связанным в виде цианидных комплексов. После титрования свинца в раствор добавляют формальдегид, который разрушает комплексы цинка, образуя цианиды. Освобожденный Zn2+ также можно определить комплексонометрическим титрованием. [c.472]

    Me H L = 1 1 и 1 2. Тартраты и малаты имеют состав Ме H L = 1 1 при [Н"] = М, а также 1 1 и 1 2 при [Н"] = 0,5—0,125 Ai. Следует отметить, что, несмотря на одинаковое отношение Ме H L при различных концентрациях ионов водорода, состав комплексов может быть различным, во-первых, вследствие того, что с уменьшением кислотности среды усиливается гидролиз циркония и гафния, приводящий к возникновению МеОН ", Ме (ОН) и др., и, во-вторых, за счет различного числа отщепляющихся от органической кислоты ионов водорода, как было показано на примере тартратного комплекса гафния. [c.300]

    Цинк в воде встречается или в виде катионов цинка, или в форме цианидных и тартратных комплексов. Иногда цинк встречается в нерастворимых формах в виде гидроокиси, карбоната, сульфида и т, д. , , [c.150]

    Катодное разделение и определение металлов. Изящным примером использования кулонометрии при контролируемом потенциале для разделения и определения катионов металлов является анализ сплавов,, содержащих Си, В1, РЬ и 5п. Взвешенную пробу растворяют в смеси азотной и хлористоводородной кислот к раствору добавляют тартрат натрия, янтарную кислоту, гидразин и доводят pH до 6,0. Из этого раствора медь можно количественно выделить на платиновом катоде,, потенциал которого поддерживают равным —0,30 В относительна Нас. КЭ. Затем катод взвешивают для определения количества меди катод, покрытый медью, возвращают в ячейку, и на электроде при потенциале —0,40 В выделяют висмут. После гравиметрического определения висмута катод снова возвращают в ячейку далее проводят выделение свинца при потенциале —0,60 В и находят его массу. Катод помещают в ячейку, раствор подкисляют для разложения тартратного комплекса олова (IV), затем при потенциале —0,60 В восстанавливают олово(IV) и находят массу этого металла. [c.428]

    Константы устойчивости цитратных и тартратных комплексов цинка и кадмия. [c.529]

    Это предположение объясняет ряд хорошо доказанных случаев взаимного влияния двух металлов. Так, известен метод фотометрического титрования меди триэтилентетрамином. Тартрат не мешает этому определению. Алюминий образует комплекс с тартратом, но не реагирует с триэтилентетрамином. Таким образом, исходя из свойств этих систем в отдельности можно было полагать, что алюминий, в присутствии тартрата, не будет влиять на фотометрическое титрование меди триэтилентетрамином. Однако в действительности установлено, что образуется смешанный медь — алюминий— тартратный комплекс и простое титрование меди не удается [78]. [c.362]


    Известно также образование магний — железо — тартратного комплекса. Для фотометрического определения магния предложен ряд реактивов, одним из наиболее удобных является титановый [c.362]

    Мешающие катионы железа(1П), кот орые т акже могут реагировать с оловом(П), предварительно связывают в растворимый тартратный комплекс, прибавляя небольшое количество раствора тартрата натрия и калия — ЫаКС4Н40б. [c.309]

    Специфичность реакции можно повысить путем маскировки сопутствующих ионов. Маскировка заключается в связывании мешающих ионов в достаточно прочные комплексы добавлением в раствор соответствующих веществ. Например, медь и свинец можно маскировать, переведя их в тартраты в таком растворе можно обнаружить те ионы, которые не образуют тартратные комплексы. Маскировка мешающих ионов часто используется и имеет большое практическое значение. Например, если в ходе анализа катионов 4-й группы к раствору, содержащему медь, кадмий, висмут, свинец, прибавить глицерин, с которым все катионы, кроме кадмия, образуют прочные комплексы, не осаждаемые щелочами, а затем подействовать гидроокисью натрия, то кадмий оседает в виде гидроокиси, а остальные катионы останутся в растЕоре и могут быть затем обнаружены. Ион Ре " мешает обнаружению Со + в виде синего роданидного комплекса, так как образует темно-красный комплекс ( 81, 82), что мешает определению кобальта. Если же железо предварительно перевести во фторидный комплекс 1РеРйР или [РеРа]-, добавляя фторид натрия, то оно не помешает определению кобальта, так как комплекс железа с фторид-ионами значительно устойчивее, чем железороданидный комплекс. Кадмий можно осадить в виде желтого сульфида в присутствии меди (И), связывая медь в цианидный комплекс [Си (СЫ) , более прочный, чем цианид-ный комплекс кадмия. /Снест для комплекса кадмия 1,4-10" , а для комплекса меди (I) 5-10 , т. е. значительно меньше. [c.100]

    Ионами серебра (в аммиачном растворе реактив Толленса) или двухвалентной меди (в виде тартратного комплекса фелинго-ва жидкость) можно в щелочной среде селективно окислять альдегиды в кислоты, причем названные ионы восстанавливаются до металлического серебра или красной окиси меди(1). Аммиачный раствор азотнокислого серебра и фелингову жидкость используют для обнаружения альдегидов, спирты и кетоны их не восстанавливают. Необходимо, однако, иметь хЗ виду, что кетозы восстанавливают фелингову жидкость аналогично альдозам, поскольку в щелочной среде кетозы легко изомеризуются в альдозы, а частично подвергаются деструкции в низшие альдозы. [c.25]

    Наибольший интерес представляют комплексы, относящиеся к группе полисоединений (изо-, гетеро-, акваполикислоты и их соли) Многочисленные галогенидные, роданидные, цианидные, сульфидные сульфатные, нитратные, оксалатные, тартратные комплексы вольфра ма и молибдена могут быть отнесены к группе ацидокомплексов [2] При экстракции вольфрама и молибдена имеют большое значение коми лексы с аминами, кетонами, аммониевыми основаниями, фосфинами и фосфорорганическими кислотами. В процессе экстракции в одних случаях соединения вольфрама и молибдена образуют путем обменного замещения с указанными органическими соединениями собственно комплексные соединения, в других же происходит взаимодействие сольватного или сорбционного типа. Об этом сказано подробнее в соответствующих разделах технологии. [c.240]

    Другие методы отделения. Для отделения галлия от сопутствующих элементов используют также ионообменную хроматографию. Аммиачный раствор (pH 9—10), содержащий галлий, цинк и винную кислоту, пропускают через катионит СБС в NH -форме. Цинк в виде прочного аммиачного комплекса [ п(ННз)4] + задерживается катионитом, а галлий в виде тартратного комплекса [0а(С4Н40б)з] переходит в раствор. [c.215]

    Для устранения мешающего влияния фосфора рекомендуется в реакционную смесь вводить определенное количество винной кислоты или ее солей. В присутствии винной кислоты вследствие связывания молибдата в лабильный тартратный комплекс, обеспечивающий образование молибдомышьяковой кислоты и препятствующий образованию молибдофосфорной кислоты, мешающее влияние фосфора устраняется. Однако применение винной кислоты несколько снижает чувствительность метода и позволяет устра- [c.55]

    При титровании кальция со всеми индикаторами надо считаться с возможностью соосаждения кальция с осадком Mg (0Н)2. Для уменьшения соосаждения надо энергично перемешивать раствор во время титрования и использовать для определения сравнительно малые количества магния п кальция. Для сни/кения со-осаждеппя предлагалось вводить сахарозу [208, 318, 381, 1227], желатин [906], винную кислоту [500, 1208], поливиниловый снирт [907], карбоцель — натриевую соль карбоксиметилцеллюлозы [1121], ацетилацетон [585]. Однако этот способ заметного эффекта не дает. Для предотвращения осаждения магния при титровании кальция предлагалось связывать магний в тартратный комплекс [1207], однако при этом получаются завышенные результаты по кальцию [585]. Попытки уменьшить соосаждение кальция гомогенизацией осадка Mg(OH)a не имели успеха [901]. [c.91]

    Осаждение магнезиальной смесью применяют для отделения фосфора от W и Fe, связанных в растворимые тартратные комплексы 71, 104, 210, 257, 550]. Эти методы, как показали наши опыты, пригодны лишь для определения содержаний фосфора, превы-шаюш их 0,1% при более низких содержаниях фосфора получаются заниженные результаты. [c.82]

    Альдегиды — один из наиболее легко окисляющихся классов органических соединений. Их превращение в карбоновые кислоты осуществляется под действием большинства окислителей, включая кислород воздуха. Даже такие слабые окислители, как гидроксид серебра в аммиачном растворе (реактив Тол-ленса) или щелочной раствор тартратного комплекса меди(И) (реактив Фелинга, см. 9.3.6), легко восстанавливаются альдегидами. Обе эти реакции часто используют как качественные для обнаружения альдегидной группы (см. 12.1.5). [c.218]

    Присутствие в молекуле фенольной или енольной гидроксильной группы подтверждается цветной реакцией с раствором хлорида железа (1П) (см. 6.2.1). Отличительной особенностью альдегидной группы служит способность восстанавливать аммиачный раствор гидроксида серебра (реактив Толленса) и щелочном раствор тартратного комплекса меди (И) (реактив Фелинга, см. 9.3.6). [c.500]

    Возможность образования ацетатных комплексных соединений свинца [5, с.31] изучена на простом приборе Дютойта и Гробета, а тартратных комплексов цинка — на более усовершенствованном приборе Джордана и Бена Яра [22]. Их результаты показывают, что имеется два определенных тартратных комплекса цинка с соотношением цинка к тартрат-иону, равным 1 1 и 1 2. За экзотермической реакцией образования первого комплекса следует эндотермическая реакция образования второго комплекса. Эти ученые исследовали также нитратные и тартратные комплексные соединения меди (II) и кадмия. [c.130]

    В этой редокс-системе, кроме концентрации реагента, на равновесие будет- сильно влиять комплексообразование и величина pH. Для одного реагента (5-фенилпиразолиндитиокарбамината) были подобраны соответствующие условия, где устойчивы как желтая, так и красная формы.I Это достигалось введением тартрата натрия (рис. 4). Оказалось, что желтая форма экстрагируется в кислой среде, а красная — в слабокислой. При этом сказывается влияние конкурирующих процессов образования соединений Мо "1 и Мо " с ПДТК и соответствующих тартратных комплексов. [c.196]

    В виде тартратных комплексов в присутствии избытка н.три-бутиламипа количественно извлекаются 11 , Ре , [c.238]

    Для отделения висмута от соосажденпых элементов применена экстракция диэтилдитиокарбамината висмута хлороформом. Висмут экстрагируется в широком ннтервале pH (4—11). Диэтилдитиокарбаминат селена экстрагируется при pH 4,0—6,2, теллура — при pH 4,0—8,8. В присутствии цианистого калия платиновые металлы, медь и никель карбаминатов не образуют. Железо может быть сязано в тартратный комплекс. Таким образом, при pH 10—12 в присутствии тартратов и цианидов влияние мешающих примесей полностью з страняется. [c.306]

    Верма и Бхучар ч определяли медь восстановлением ее тартратного комплекса глюкозой до образования нерастворимой СпгО к последней добавляли избыток стандартного раствора иода, который определяли обратным титрованием арсенитом, В качестве комплексанта, способствующего окислению СпгО, добавляли оксалат авторы приняли меры предосторожности, исключающие возможность окисления воздухом. Преимущество этого метода заключается в том, что он свободен от мешающего влияния ванадия (V). [c.455]

    Отделение мышьяка от сурьмы производят осаждением в виде MgNH4As04 в качестве коллектора используют MgNH4P04. Для предотвращения выпадения сурьмы в осадок ее связывают в тартратный комплекс. Метод определения мышьяка основан на образовании мышьяково-молибденовой сини, экстрагируемой изоамиловым спиртом [6]. [c.237]

    Как уже указывалось выше, особый интерес представляет определение фенольных оксигрупп орто- и рядового расположения как наиболее реакционноспособных. Для этой цели нами был разработан специальный метод (Курсанов, Запрометов, 1949), основанный на образовании фенольными соединениями, содержащими подобные оксигруппы, специфической окраски с железо(Ге )-тартратным комплексом. [c.62]


Смотреть страницы где упоминается термин Тартратные комплексы: [c.192]    [c.176]    [c.473]    [c.82]    [c.439]    [c.155]    [c.250]    [c.155]    [c.238]    [c.308]    [c.309]    [c.108]    [c.46]   
Аналитическая химия циркония и гафния (1965) -- [ c.38 , c.40 ]




ПОИСК







© 2025 chem21.info Реклама на сайте