Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляция эффекторы

    Во всех до сих пор рассмотренных примерах регуляции транскрипции на взаимодействие РНК-полимеразы с промотором влияли белки. Регуляция синтеза рибосомных РНК дает пример того, что с РНК-полимеразой могут непосредственно реагировать и низко молекулярные эффекторы. [c.154]

    Среди указанных эффекторов наиболее важное значение для регуляции ферментативной активности имеют ингибиторы (АТФ, цитрат) и активаторы (фруктозо-6-фосфат, фруктозо-1,6-дифосфат, фруктозо- [c.238]


    Кооперативный характер связывания ферментов с субстратами имеет, пожалуй, такое же большое физиологическое значение, как и кооперативное связывание гемоглобина с кислородом, которое обеспечивает более эффективное высвобождение связанного кислорода в тканях (гл. 4, разд. Д, 5). Кооперативность связывания субстрата отсутствует в том случае, когда благодаря избытку активатора фермент переходит в состояние R (В), при котором связывающие центры ведут себя независимо. В то же время связывание активатора должно характеризоваться сильно выраженной кооперативностью, т. е. скорость реакции должна изменяться при изменении концентрации активатора сильнее, чем в случае гиперболической активации. Аналогичным образом кооперативное связывание ингибитора обеспечивает более быстрое выключение фермента при увеличении концентрации ингибитора. По-видимому, эволюция олигомерных ферментов (по крайней мере отчасти) обусловлена большей эффективностью механизмов регуляции, в основе которых лежит кооперативное связывание эффекторов. [c.39]

    АМФ действует как положительный эффектор и ликвидирует влияние отрицательного эффектора — АТФ на процесс регуляции активности. [c.51]

    Известно несколько типов протеинкиназ, активируемых различными эффекторами. Субстраты протеинкиназ —огромное количество белков, фосфорилирование которых приводит к изменению их активности. Более того, обнаружены протеинфосфатазы, которые, осуществляя гидролиз фосфатной группы, возвращают белковую молекулу в исходное состояние. Во многих случаях мишенью действия киназ являются другие киназы, которые фосфорилируют фосфатазы, в свою очередь регулируя их функцию. Таким образом, регуляция метаболизма имеет каскадный характер. [c.318]

    Рецепторы, будучи первичными приемниками внеклеточных сигналов, гибко реагируют на их интенсивность. Они являются регуляторными белками, и на их активность влияют различные факторы типа тех, которые были обсуждены выше. Суммируя механизм регуляции, можно сказать, что активность рецепторов, включая рецепторы гормонов и медиаторов, регулируется, во-первых, числом рецепторов и, во-вторых, их сродством к эффекторам. [c.298]

    Большое количество эффекторов свидетельствует о сложной регуляции образования микротрубочек в клетке. Ассоциация, видимо, начинается в одной точке клетки и идет в одном направлении при добавлении мономеров к удлиняющемуся или головному концу полимера, тогда как на хвостовом конце преобладает диссоциация. Вероятно, сумма этих векторных процессов обусловливает наблюдаемый медленный аксональный поток тубулина. [c.312]


    Количество определенного фермента в клетке может регулироваться на нескольких уровнях на этапе транскрипции, трансляции, а также в процессе сборки и разрушения ферментного белка (см. рис. 28). В иерархии регуляторных воздействий наиболее сложный механизм, контролирующий количество ферментов в клетке, связан с процессом транскрипции. Специфические химические сигналы могут инициировать или блокировать транскрипцию определенного участка ДНК в иРНК. В случае индукции образованная иРНК участвует в определенной последовательности реакций, называемой трансляцией и заканчивающейся синтезом полипеп-тидных цепей. Регуляция белкового синтеза на уровне трансляции может осуществляться на любом из ее этапов, например на этапе инициации, элонгации и др. Не исключена также возможность изменения времени жизни иРНК под воздействием разных эффекторов, в том числе конечных продуктов метаболических путей. Хотя механизмы регуляции синтеза белка на уровне трансляции еще точно не установлены, ясно, что на этом этапе имеются широкие возможности для регуляции скорости синтеза различных белков. [c.117]

    Адениловые ну1 леотиды относятся к числу важнейших эффекторов. АМФ и АДФ действуют как положительные эффекторы, стимулирующие скорость энергетических процессов и, следовательно, повышающие выход АТФ. Наоборот, АТФ служит отрицательным эффектором, сигнализирующим о превышении процессов образования АТФ над его потреблением. В результате регуляции процессов синтеза и распада АТФ в клетке поддерживается стационарное энергетическое состояние, характеризующееся так называемым энергетическим зарядом клетки  [c.124]

    Описанные в 10.1 пути регуляции ключевых ферментов систем биохимических процессов являются самыми быстродействующими. Изменение концентрации аллостерического эффектора ведет к изменению количества фермента, находящегося в комплексе с эффектором, за малые доли секунды, поскольку время установления равновесия для комплексов фермент—эффектор весьма мало. [c.424]

    По-видимому, большое значение в процессах регуляции клеточного деления имеет группа белков, программируемых так называемыми онкогенами. Измененные (мутантные) формы этих генов обнаруживаются в опухолевых клетках и входят в ряде случаев в виде соответствующих РНК-копий в состав онкогенных (т.е. вызывающих опухоли) ретровирусов. Первым открытым онкогеном был ген sr , входящий в состав вируса саркомы Рауса. Программируемый им белок, продукт гена sr , оказался протеинкиназой, которая в отличие от протеинкиназ класса А и протеинкиназы С катализировала фосфорилирование определенного спектра клеточных белков по остаткам тирозина, а не по остаткам серина и треонина, Дальнейшие исследования показали, что такая активность присуща некоторым рецепторам факторов роста, в частности рецептору эпидермального фактора роста. Ген erd, программирующий аналог этого рецептора, был обнаружен в составе онкогенного вируса птичьего миелобластоза, В настоящее время открыто несколько десятков онкогенов. В большинстве изученных случаев продукты этих онкогенов в здоровых клетках являются участниками передачи митогенных (т. е. управляющих, митозами) сигналов. В ряде опухолей, в том числе человеческих, найдены онкогены, программирующие аналоги белка G,воспринимающего сигна-, лы от комплексов эффектор - рецептор (в частности, онкогены Н—ras и К—ras) онкогены, программирующие синтез аналогов самих факторов роста, например онкоген sis, входящий в состав вируса саркомы обезьян, продукт которого является аналогом фактора роста, выделяемого тромбоцитами (клетками крови, участвующими в процессе свертывания) онкогены, продуктами которых являются аналоги ядерных белков, по-видимому, участвующих на заключительных этапах каскада превращений, возникающего в ответ на митогенный сигнал (онкогены туе, fos и др.). [c.428]

    В основе индукции синтеза ферментов лактозного оперона л ежит механизм негативной регуляции исходно репрессор запрещает транскрипцию генов лактозного оперона индукция. заключается в инактиви-ровании репрессора аллостерическим эф,фектором —индуктором. Таким образом, И В случае индукции путем негативной регуляции, и в случае репрессии синтеза ферментов взаимодействие репрессора с оператором лр.иводит к подавлению процесса транскрипции соответствующих структурных генов. Различие заключается в том, что при индукции путем негативной. регуляции эффектор (индукто р), взаимодействуя с репрессором, понижает сродство последнего к оператору, а в случае репрессии эффектор (корепрессор) пО(В ы.шает это сродство. [c.121]

    Скорость превращения веществ в альтернативных метаболических путях, а значит и их предпочтительная направленность решающим образом зависят от особенностей функционирования ферментов субстратного цикла. Для таких ферментов характерна, как правило, реци-прокная регуляция с участием аллостерических эффекторов. В случае рассматриваемого субстратного цикла эффекторами являются АМФ — ингибитор фруктозо-1,6-дифосфатазы и активатор фосфофруктокиназы, а также цитрат-ион, являющийся активатором фруктозо-1,6-дифосфатазы и ингибитором фосфофруктокиназы. [c.354]


    В основе многих явлений регуляции, по-видимому, лежит связывание эффектора с аллостерическим центром, вызывающее изменение конформации молекулы фермента. Эффект действия аллостерическнх инги- [c.35]

    Наиболее широко распространенным механизмом регуляции ферментов в клетках является, по-видимому, аллостерическая активация или ингибирование, которые вкратце рассмотрены выше (разд. Б, 6). Метаболические пути контролируются аллостерическими механизмами самых разных типов наиболее распространенными из них являются следующие два механизма. Первый может быть назван активация предшественником. Метаболит, действующий как аллостерический эффектор, включает фермент, катализирующий превращение либо этого же метаболита, либо продукта, находящегося немного далее в цепи превращений. Например, на рис. 6-15 метаболит С (предшественник) активирует фермент, который катализирует практически необратимое превращение соединения D. В других случаях активация является менее прямой. Вк,тюченный фермент может участвовать в образовании второго [c.69]

    В 1956 г. Э. Сазерленд установил, что сАМР — это соединение, опосредующее действие гормонов адреналина и глюкагона на гликогенфос-форилазу. На протяжении многих лет большинство биохимиков смотрели на сАМР как на некую диковинку, а иа химический механизм регуляции фосфорилазы — как на нечто исключительное. В последнее время, однако, взгляды на этот вопрос резко изменились, поскольку было показано, что сАМР опосредует действие более чем двадцати различных гормонов. Циклический АМР опосредует также, по-видимому, действие нейромедиатор ов, высвобождающихся в синапсах. Даже Е. oli продуцирует сАМР, который действует как положительный эффектор при инициации транскрипции определенных генов (гл. 15, разд. Б, 2). В 1971 г. Сазерленду была присуждеиа Нобелевская премия за успешное раЗ Витие этой области исследований [74, 75]. [c.71]

    Особый вид регуляции ферментов - аллостерическая регуляция. Это может быть ингибирование или активация, и в этом случае действующие факторы называют ингибиторами или активаторами, или общим термином - алло-стерические эффекторы, т.е. действующие как бы в другом месте реакции (аллос - другой, иной). Обычно такой тип регуляции наблюдается в сложных многоступенчатых биохимических реакциях и называется часто ингибированием по типу обратной связи продукт последовательной реакции (иногда продукт реакции или близкий к нему интермедиат) ингибирует активность на одной из ранних стадий. [c.34]

    Белки, осуществляющие негативную регуляцию, называются репрессорами.. Места их связывания на ДНК называются операторами. Способность многих репрессоров связываться со своими операторами зависит от низкомолекулярных лигандов — эффекторов. Эффекторы, снижающие сродство репрессора к оператору,, называются индукторами. В отсутствие индуктора репрессор связывается с оператором и мешает РНК-полимеразе начинать синтез РНК с промотора (промотор репрессирован). В комплексе с индуктором репрессор теряет способность связываться с оператором, в результате чего промотор активируется (индуцируется). Другие реп-рессоры, наоборот, могут связываться с оператором только в комплексе с эффектором (который в этом случае называется корепрес-сором). В присутствии корепрессора промотор неактивен (репрессирован), в отсутствие корепрессора активируется (дерепресси-руется). [c.142]

    Синтез рибосомных РНК строго скоординирован с синтезом рибосомных белков так, что в клетках в заметных количествах не обнаруживается ни свободных рибосомных РНК, ни свободных рибосомных белков. Скорость образования рибосом регулируется в быстро растущих на богатых питательных средах культурах эта скорость высокая, в медленно растущих на бедных средах — низкая. Механизмы координированной регуляции синтеза компонентов, рибосом отличаются большой сложностью и изучены еще недостаточно. Здесь будет рассмотрен только один элемент этой регуляции, основанной на взаимодействии с РНК-полимеразой низкомолекулярного эффектора гуанозинтетрафосфата. Этот нуклеотид синтезируется на рибосомах в условиях аминокислотного голодания клеток. Накопление гуанозинтетрафосфата в голодающих по аминокислотам клеткам приводит к значительному замедлению синтеза рибосомных РНК и мРНК рибосомных белков и может стимулировать транскрипцию оперонов биосинтеза аминокислот. [c.154]

    В белковой части фермента может находиться и аллостери-ческий центр, имеющий большое значение в регуляции ферментной активности. После присоединения к этому центру соответствующих веществ — эффекторов активность фермента изменяется. Конечные продукты ферментативных реакций обычно являются негативными эффекторами — присоединение их к ал-лостерическому центру фермента уменьшает его активность. Вещества, присоединение которых к аллостерическому центру молекулы фермента вызывают увеличение активности, называют позитивными эффекторами. [c.29]

    Рецепторы серотонина (5-гидрокситриптаминовые или 5-НТ-рецепторы) также действуют как множественные . HTi имеет -сродство к серотонину Ко порядка нМ) и, вероятно, связан со стимулирующими GTP-зависимым N-белком и аденилатциклазой. Напротив, НТг имеет низкое сродство к серотонину. И НТь и НТг связывают серотонинэргический антагонист LSD с высоким сродством. По-видимому, рецепторы серотонина участвуют в регуляции сна, настроения и восприятия боли и отвечают за такие нарушения, как депрессия и синдром Каннера. HTi был солюбилизирован из мембран коры мозга быка детергентами согласно предварительным данным это белок с М 58 ООО, существующий во взаимопревращающихся состояниях с различным сродством к эффекторам. [c.296]

    Физиологически рецепторы функционируют как регуляторные белки. Число, сродство и активность рецепторов находятся под контролем различных механизмов регуляции. Они также являются местом действия многочисленных экзогенных эффекторов, а именно лекарств и токсинов. Некоторые заболевания нервной системы имеют рецепторную природу (миастения и, возможно, шизофрения). Некоторые, так называемые рецепторы, особенно участки связывания лекарств, могут быть в действительности регуляторными связывающими центрами или субъединицами истинных комплексов нейромедиатор — рецептор. Таким образом, мягкие транквилизаторы, бенздиазепины и барбитураты, которые усиливают ингибиторное действие GABA-эргических нейронов, по-видимому, действуют путем стимуляции связывания GABA с ее рецептором. [c.300]

    Механизм репрессии конечным продуктом на уровне транскрипции стал проясняться с 50-х гг. XX в. Большой вклад в это внесли работы Ф. Жакоба и Ж. Моно. Было показано, что наряду со структурными генами, кодирующими синтез ферментов, в бактериальном геноме существуют специальные регуляторные гены. Один из них — ген-регулятор (ген К), функция которого заключается в регуляции процесса транскрипции структурного гена (или генов). Ген-регулятор кодирует синтез специфического аллосте-рического белка-репрессора, имеющего два центра связывания один узнает определенную последовательность нуклеотидов на участке ДНК, называемом оператором (ген О), другой — взаимодействует с эффектором. Ген-оператор расположен рядом со структурным геном (генами) и служит местом связывания репрессора. В отличие от операторных генов гены-регуляторы расположены на некотором расстоянии от структурных генов (продукты регуляторных генов — репрессоры являются свободно диффундирующими белковыми молекулами). [c.119]

    Как это осуществляется Изучение механизма катаболитной репрессии обнаружило, что этот тип регуляции тесно связан с внутриклеточным уровнем циклического АМФ (цАМФ), который в этом процессе функционирует в качестве эффектора. Он образует комплекс с аллостерическим белком — катаболитным активатором, не активным в свободном состоянии. Этот комплекс, присоединившись к определенному участку на промоторе, обеспечивает возможность связывания РНК-полимеразы с промотором и инициацию транскрипции. Количество образующегося комплекса определяется концентрацией цАМФ, которая уменьшается при увеличении содержания глюкозы в среде. Таким образом, глюкоза вызывает изменение внутриклеточной концентрации цАМФ. Это соединение обнаружено в клетках всех прокариот. Его единственная функция — регуляторная. Циклический АМФ образуется из АТФ в реакции, катализируемой аденилатциклазой, связанной с ЦПМ  [c.122]

    Важное значение в регуляции процессов дифференцировки и размножения клеток имеет протеинкиназ а С. Этот фермент активируется, как и протеинкиназы класса А, в результате взаимодействия специальных рецепторов клеточной мембраны с соответствующими эффекторами, которыми в случае протеинкиназы С являются некоторые гормоны и факторы роста. Активированная протеинкина-за С катализирует фосфорилирование определенного набора белков, что, по-видимому, является промежуточным этапом каскада превращений, заканчивающегося в ядре запуском репликации ДНК и сопутствующих процессов. [c.427]

    Циклические нуклеотвды 3, 5 -аденозинмонофосфат (цАМФ) и 3, 5 -гуано-зинмонофосфат (цГМФ) являются внутриклеточными посредниками различных внеклеточных сигналов (гормонов, нейромедиаторов и т. д.). Они образуются под действием ферментов (циклаз), активность которых регулируется различными эффекторами, в том числе и гормонами, и осуществляют регуляцию внутриклеточного метаболизма. Существующие также циклические соединения 2, 3 -АМФ и 2, 3 -ГМФ являются промежуточными продуктами распада нуклеиновых кислот и не имеют самостоятельного функционального значения  [c.176]

    Каталитическая активность и регуляция активности ферментов могут протекать в форме мгновенного обратимого ингибирования по типу обратной связи (Feedba k mhibifaon) с использованием аллостерических эффекторов небольшой молекулярной массы, не имеющих структурного сходства с субстратами или коферментами и связываю1цимися с аллостерическими сайтами (не активными центрами) ферментов [c.76]

    Регуляция активности белковых посредников транспортных систем может осуществляться путем обратимой ковалентной модификации (например, путем фосфорилирования регулируется активность фосфотрансферазной системы, а также K /Na" - АТФаза) или путем нековалентного взаимодействия с эффекторами. [c.68]

    Пунктирными линиями обозначены пути регуляции активности ферментов аллосте-рическими эффекторами, а также активности генов (транскрипция и трансляция). Знак минус указан в случае ингибирования и репрессии. Знак плюс - в случае активации и репрессии. Кружки соответствую прямому действию на ферменты, квадратики - репрессии или индукции синтеза ферментов. [c.461]


Смотреть страницы где упоминается термин Регуляция эффекторы: [c.132]    [c.154]    [c.201]    [c.500]    [c.500]    [c.205]    [c.219]    [c.75]    [c.132]    [c.201]    [c.45]    [c.48]    [c.278]    [c.333]    [c.216]    [c.259]    [c.572]    [c.76]    [c.500]    [c.500]   
Биологическая химия Изд.3 (1998) -- [ c.449 ]




ПОИСК





Смотрите так же термины и статьи:

Регуляция



© 2024 chem21.info Реклама на сайте