Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трехмерная структура ферментов

    Бычья панкреатическая рибонуклеаза, как было рассмотрено выше (разд. 7.3.1), гидролизует РНК ее аминокислотная последовательность приведена на рис. 9.7. Еще до установления трехмерной структуры фермента, когда была известна только его аминокислотная последовательность, серия интересных исследований позволила получить значительную информацию об активном центре и механизме действия рибонуклеазы. [c.306]


Рис. 1.3. Трехмерная структура фермент-ингибиторного комплекса лизоцима Рис. 1.3. <a href="/info/105557">Трехмерная структура фермент</a>-<a href="/info/1377599">ингибиторного комплекса</a> лизоцима
    Этот дешевый и легко доступный фермент явился испытательной площадкой для многих реагентов и методов. В наши дни, естественно, исследование активного центра, проведенное целиком в одной лаборатории, было бы более коротким и более убедительным, главным образом в силу ставшей известной из рентгеноструктурного анализа трехмерной структуры фермента. Такая информа- [c.481]

    В настоящее время при помощи весьма совершенных физикохимических методов предпринимаются исследования трехмерной структуры ферментов, но достижения в этой области пока довольно скромны и касаются единичных ферментов. [c.7]

    Прежде всего рентгеноструктурный анализ позволяет определить вторичную, третичную и четвертичную структуры молекул различных ферментов, что дает возможность сравнивать их с соответствующими структурами некаталитических глобулярных белков. Такие сравнения не выявили никаких специфических особенностей в трехмерной структуре ферментов, по которым они отличались бы от некаталитических белков. Однако ферменты, принадлежащие к одному классу (например, ферменты, катализирующие перенос фосфатных групп от АТР на молекулы, играющие роль акцепторов фосфата) могут обладать какими-то общими для всех них структурными особенностями. [c.255]

    Главные цели изучения биокатализа, по-видимому, можно ограничить следующими тремя. Во-первых, достижением понимания принципов стереохимического механизма ферментативного катализа и возможностью количественного описания, исходя из знания структур взаимодействующих молекул, каталитического акта как спонтанно протекающего, взаимообусловленного на всех своих стадиях непрерывного процесса. Во-вторых, выяснением в каждом конкретном случае причины специфичности фермент-субстратных и фермент-ингибиторных взаимодействий. В-третьих, целенаправленным конструированием наборов ингибиторов, обладающих наперед заданными свойствами. Возникающие при достижениях этих целей проблемы и возможные подходы к их разрешению будут подробно обсуждены в четвертом томе монографии "Проблемы белка". А сейчас попытаемся ответить на вопрос о том, что нового привнес рентгеноструктурный анализ в изучение аспартатных протеиназ и в какой мере знание трехмерных структур ферментов и их ингибиторных комплексов смогло углубить понимание механизма каталитической реакции аспартатных протеиназ. Ответ на этот вопрос имеет общее для энзимологии значение, поскольку, как отмечалось, протеиназы являются наиболее изученными во всех отношениях объектами биокатализа. Рассмотрим гипотетические модели механизма действия аспартатных протеиназ, в основу разработки которых были положены данные о трехмерных [c.98]


    Рассмотренный материал об аспартатных протеиназах, как и подобный материал о химотрипсине, трипсине, карбоксипептидазе и лизоциме, изложенный ранее [400], дает основание заключить, что появление уникальной количественной информации о пространственном строении ферментов и их комплексов не привело к концептуальному развитию энзимологии и переосмыслению сложившихся представлений о природе биокатализа. Ставшие доступными рентгеноструктурные данные не вызвали принципиальных изменений в понимании явления ферментативного катализа и не нашли строгого объяснения в рамках сформулированных в 1950-е годы концепций, равно как и наоборот — последние не получили на основе новых структурных данных своей объективной трактовки. Данные рентгеноструктурного анализа о трехмерных структурах ферментов не изменили направленность исследований каталитических реакций "от функции к структуре", которой энзимология следует с момента своего становления, т.е. более 150 лет. [c.105]

    Аллостерические ферменты представляют собой олигомеры они состоят из двух, четырех, шести (или более) идентичных или различных субъединиц, способных взаимодействовать друг с другом. Связывание ингибитора искажает трехмерную структуру фермента это искажение передается активному центру и вызывает подавление активности фермента. Следовательно, некоторые метаболиты обладают способностью передавать информацию (обычно путем изменения концентрации) ключевым ферментам о состоянии обмена веществ в клетке, в частности сигнализировать о необходимости прекращения дальнейшего функционирования данного метаболического пути. [c.12]

    ТРЕХМЕРНАЯ СТРУКТУРА ФЕРМЕНТОВ [c.11]

    ТРЕХМЕРНАЯ СТРУКТУРА ФЕРМЕНТОВ 16 [c.15]

    Б. Трехмерная структура ферментов [c.15]

    ТРЕХМЕРНАЯ СТРУКТУРА ФЕРМЕНТОВ 31 [c.31]

    ТРЕХМЕРНАЯ СТРУКТУРА ФЕРМЕНТОВ 39 [c.39]

    ТРЕХМЕРНАЯ СТРУКТУРА ФЕРМЕНТОВ 41 [c.41]

    ТРЕХМЕРНАЯ СТРУКТУРА ФЕРМЕНТОВ 43 [c.43]

    Каталитическую активность а-химотрипсина нельзя приписать исключительно наличию системы переноса зарядов. Из рентгено структурных исследований следуют многие другие факторы, от ветственные за каталитический процесс. Было обнаружено де вять видов специфических ферментсубстратных взаимодействий которые повышают эффективность а-химотрипсина. Например стабилизация тетраэдрического интермедиата, а следовательно понижение энергетического барьера переходного состояния, со провождается образованием водородной связи между карбониль ной группой субстрата и амидным атомом Ser-195 и Gly-193 В химотрипсиногене эта водородная связь отсутствует. Действи тельно, уточнение структур химотрипсиногена и а-химотрипсина с помощью рентгеноструктурного анализа показывает различия в расположении каталитической триады в зимогене и ферменте. Это конформационное изменение в общей трехмерной структуре фермента, возможно, вызывает значительные изменения химических свойств каталитического центра, что может играть важную роль в увеличении ферментативной активности при активации зимогена. [c.221]

    Многие из указанных выше эффектов можно прекрасно проиллюстрировать на примере механизмов связывания и катализа, осуществляемых ферментом лизоцимом. Лизоцим занимает особое место в истории энзимологии, поскольку его трехмерная структура была первой нз структур белков, определенных методом рентгеноструктурного анализа [134]. Это маленький белок, состоящий из одной полипептидной цепи длиной в 129 аминокислотных остатков, катализирует гидролиз гликозидных связей углеводного компонента клеточной стенки бактерий (как часть защитного механизма против бактериальной инфекции). Природным субстратом лизоцима является чередующийся сополимер (86) Л -ацетил-[5-0-мурамовой кислоты (NAM) и Л -ацетил-р-й-глюкоз-амина (NAG), связанных [i-1-> 4-гликозидными связями, однако большая часть работ по изучению механизма была проведена на более простых субстратах. Так, поли-Л -ацетилглюкозамин также гидролизуется ферментом, однако эффективность этой реакции существенно зависит от размера субстрата и трисахарид (NAG)3 фактически является ингибитором лизоцима. Сравнение трехмерных структур фермента и комплекса последнего с (NAG)a показывает, что трисахарид связывается во впадине фермента. Такое сравнение позволяет детально исследовать связывание трех моно-сахаридных звеньев (NAG)a в участках А, В и С фермента, которое осуществляется посредством комбинации гидрофобных рччимодействий и водородных связей. Как отмечалось при об- [c.528]

    Известно много генетических болезней человека, при которых тот или иной фермент либо совсем неактивен, либо имеет какой-то дефект, затрагивающий его каталитическую или регуляторную функцию. При таких заболеваниях в полипептидных цепях дефектного фермента содержится одна или большее число неправильных аминокислот, появившихся в результате мутации участков ДНК, кодирующей этот фермент. Каталитическая активность фермента зависит не только от наличия определенных аминокислотных остатков в каталитическом и регуляторном центрах, но и от общей трехмерной структуры фермента. Поэтому замена одного аминокислотного остатка в каком-либо важном месте цепи может привести к изменению или даже к полной утрате каталитической активно сти фермента, подобно тому как замена всего лишь одного аминокислотного остатка в молекуле гемоглобина вьпы-вает появление серповидноклеточного гемоглобина с нарушенной функцией (разд. 8.18). Если генетически измененный фермент входит в состав ферментной системы, катализирующей ка-кой-нибудь центральный метаболический путь, то последствия такого изменения могут быть очень тяжелыми, вплоть до летальных нарушений метаболизма. [c.266]


    Эти положения были сформулированы и подтверждены экспериментально при изучении ферментативных и модельных неферментативных реакций еще до того, как был выполнен рентгеноструктурный анализ хотя бы одной молекулы аспартатной протеиназы. Ставшие известными трехмерные структуры ферментов и их комплексов с субстратоподобными ингибиторами дополнительно подтвердили некоторые из ранее сделанных заключений и позволили визуализировать уже сложившиеся представления. [c.104]

    Миозин является объектом всестороннего изучения практически на протяжении всего XX столетия. Еще в исследованиях А.Я. Данилевского в конце прошлого века отмечалось, что миозин обладает двойным лучепреломлением. Однако до самого последнего времени все знания о пространственной структуре ограничивались информацией о внешнем очертании молекулы и ее габаритных размерах, полученных с помощью электронной микроскопии. В частности, было известно, что миозиновая головка имеет грушевидную форму 190 A в длину и 50 A в ширину, а двойная спираль хвостового участка соответственно 1500 и 20 А [468-471]. Последние три десятилетия камнем преткновения в определении трехмерной структуры миозина, как и структуры актина, было получение качественных кристаллов белка для рентгеноструктурного анализа. И. Рейменту и соавт. удалось получить требуемые кристаллы, использовав не совсем обычный в белковой кристаллографии прием - N-метилирование боковых цепей всех остатков Lys миозинового фрагмента I в мягких условиях [472]. Для того чтобы убедиться в том, что метилирование не привело к радикальному изменению конформационных и ферментативных свойств белка, авторы подвергли подобной химической модификации лизоцим и не обнаружили после этой процедуры существенных нарушений в трехмерной структуре фермента. Кроме того, были проверены кинетические свойства метилированного миозина SI [473]. Он сохранял каталитическую активность, хотя и наблюдались отклоне- [c.125]

    Заметно не отличаются методы и в отношении размеров облучаемого кристалла и диаметра фокусного пятна. Так, при определении трехмерной структуры антитела Fab 17/9 (16) с использованием излучения рентгеновской трубки Elliott Gxl8 с вращающимся анодом образец имел размеры 0,30 0,04 0,02 мм , а фокусное пятно составляло всего 0,1 мм. Эти параметры явно не уступают условиям эксперимента с синхротронной радиацией. Можно однако полагать, что ситуация с кристаллизацией белков в последнем случае потенциально несколько предпочтительнее, так как мощное синхротронное излучение и его острый фокус позволяют использовать кристаллы, имеющие меньшие размеры и содержащие большие элементарные ячейки. Примеров, иллюстрирующих такую возможность, пока нет. На сегодняшний день проблема кристаллизации белков в обоих случаях стоит столь же остро, как и десятки лет назад. О трудностях получения качественных монокристаллов требуемой величины говорится почти во всех работах. Типично в этом отношении замечание авторов, исследовавших трехмерную структуру фермента из 839 аминокислотных остатков, липокси-геназу I "Кристаллы белка удалось получить после опробования более тысячи различных условий кристаллизации" [516. С. 1482]. Особенно сложное положение, как уже отмечалось, с кристаллизацией мембранных белков (о предпринимаемых здесь усилиях и относительных успехах см. [517-520]). [c.141]

    Механизм функционирования галоалкандегалогеназы. Авторы ряда работ применили рентгеновскую кристаллографию к изучению механизма каталитического акта галоалкандегалогеназы (табл. 1.10) [503 -505]. Трехмерные структуры фермента, монокристалл которого постоянно находится в маточном растворе, были расшифрованы по картам электронной плотности, рассчитанным по дифракциям образца в отсутствие и в присутствии субстрата 1,2-дихлорэтана [504]. При pH 5 и 4°, условии, далеком от оптимального, (pH 8,2 и 22°), субстрат связывался с активным центром, однако развития каталитической реакции не происходило. Образовавшийся невалентный фермент-субстратный комплекс Михаэлиса оставался стабильным как угодно долго, и поэтому его структура могла быть определена при использовании излучения рентгеновской трубки, экспозиции в 48 ч и сохранении всех других условий анализа нативного фермента. Найденное расположение субстрата в активном центре в схематической форме представлено на рис. 1.39. Один атом хлора ( lj) в комплексе располагается на расстояниях 3,6 и 3,2 A от атомов азота боковых цепей Тгр-125 и Тгр-175 и взаимодействует с водородами двух связей N-H. Другой атом хлора ( I2) стабилизирован дисперсионными взаимодействиями с бензольными кольцами Phe-128 и Phe-172. В найденной конформации субстрата в активном центре атом углерода С] сближен с кислородом 0° боковой цепи Asp-124 (3,8 А), что главным образом и обусловливает продуктивность невалентного комплекса. При нагревании кристаллического образца до комнатной температуры происходит разрыв связи С]-С1], [c.148]

    Н.К. Наградова и В.И. Муронец [235], говоря о важности доменной организации белковых молекул, идут дальше. Они считают, что образование доменов является общим принципом формирования трехмерных структур ферментов, которые только благодаря этому обретают возможность осуществлять биокатализ. Стало очевидно — пишут они, — что основные свойства ферментов, обеспечивающие как реализацию катализа, так и регуляцию его эффективности, в той или иной степени определяются их мультидоменной структурой [235. С. 7]. Поскольку известно много однодоменных ферментов, то такое обобщение вряд ли можно считать очевидным. [c.309]

    Какова природа изменений активности фермента, вызываемых связыванием аллостерического эффектора или ковалентной модификацией (например, фосфорилированием) Почему графики зависимости активности фермента от концентрации субстрата или эффектора часто имеют сигмоидный характер Для ответа на эти вопросы необходимо сначала определить трехмерную структуру фермента при высокой степени разрешения, а затем установить, какие именно изменения конформации фермента происходят при связывании субстратов и эффекторов или при ковалентной моди--фикации. Только для двух ферментов, рассмотренных в гл. 2, 4 и 5 —АТКазы [1] и фосфорилазы [2—4],— получены рентгеноструктурные данные с разрешением 0,3 нм. И даже для этих ферментов представления о природе конформационных изменений при действии -аллостерических эффекторов имеют предварительный характер. Имеются данные о том, что при переходе АТСазы из активного в неактивное состояние происхо-.дит небольшое увеличение объема молекулы фермента сохранение структуры R — R (рис. 2.12) позволяет предполагать, что при этом изменяется положение тримеров, образованных каталитическими субъединицами, относительно димеров регуляторных субъединиц. [c.135]

    ЛИТЬ по образованию продуктов катализируемой им реакции. Большинство используемых ферментных меток способно за 1 мин при обычных температуре и давлении превращать в продукты 10 молекул субстрата в расчете на одну молекулу фермента. Каталитическая эффективность фермента сильно зависит от его трехмерной структуры (конформации), Пространственная структура фермента, как и любого белка, поддерживается многочисленными нековалентными взаимодействиями, такими, как гидрофобные и водородные связи, ионные контакты, а также ковалентными дисульфидными связями. Трехмерная структура фермента обеспечивает близкое соседство определенных аминокислотных остатков в положениях, наиболее выгодных для осуществления катализа. Нековалентные химические связи непрочны и легко разрушаются или ослабляются под влиянием тепловой энергии или дополнительных нековалентных взаимодействий, возникающих, например, при связывании ионов, хао-тропных агентов, детергентов, липидов и т. д. Известно, что присоединение к ферменту другой молекулы (скажем, аллосте-рического эффектора) в области, удаленной от активного центра (т. е. каталитического центра), может вызвать конформацион-ную перестройку, изменяющую пространственное расположение аминокислотных остатков в этом центре. Изменения в некова- лентных взаимодействиях, приводящие к новой, необычной конформации фермента, способны существенно повлиять на каталитическую активность. Подобная конформационная гибкость становится одной из помех при использовании фермента в качестве метки. Однако эта же гибкость полезна для разработки иммуноферментного анализа без разделения компонентов, основанного на вызываемых антителами изменениях в конформации конъюгата [лиганд — фермент]. Другое преимущество применения ферментов в качестве меток обусловлено наличием в их молекулах многочисленных функциональных групп (аминогрупп, сульфгидрильных, карбоксильных, карбамоильных, остатков тирозина), через которые можно ковалентно присоединять молекулы лигандов. [c.12]

    Каталитическая активность химотрипсина определяется необьпайно высокой реак-ционноспособностью серина-195. В физиологических условиях —СНзОН-группа обычно инертна. Почему же в активном центре химотрипсина ее реакционная способность столь резко возрастает Объяснить это можно, исходя из результатов рентгеноструктурного исследования трехмерной структуры фермента. Как и можно было предположить еще на основе результатов введения аффинной метки, гистидин-57 расположен в непосредственной близости от серина-195. Рядом находится также карбоксильная группа боковой цепи аспартата-102 (рис. 8.14). [c.158]


Смотреть страницы где упоминается термин Трехмерная структура ферментов: [c.219]    [c.485]    [c.486]    [c.514]    [c.518]    [c.99]    [c.288]    [c.291]    [c.79]    [c.298]    [c.101]    [c.154]   
Смотреть главы в:

Структура и механизм действия ферментов -> Трехмерная структура ферментов

Структура и механизм действия ферментов -> Трехмерная структура ферментов




ПОИСК





Смотрите так же термины и статьи:

Ферментов структуры

Цинксодержащие ферменты трехмерные структуры



© 2024 chem21.info Реклама на сайте