Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Культивирование клеток растени

    Эукариотические клетки, как правило, удается культивировать в лабораторных и производственных условиях с большим или меньшим успехом При сравнении, например, клеток дрожжей — сахаромицетов, используемых в производстве вин, и клеток — бластов человека, применяемых в производстве интерферона, культивирование последних сопряжено с большими трудностями, чем культивирование первых В такой же мере можно говорить о различиях клеток растений и животных Для клеток растений характерна тотипотентность, то есть способность любой отдельной растительной клетки в соответствующих условиях культивирования трансформироваться в целое растение Клетки животных не обладают такой способностью и выращивать их труднее, чем клетки растений [c.139]


    Процесс криоконсервации, как правило, начинается с подготовки культуры клеток к замораживанию. Это может быть достигнуто несколькими способами, предусматривающими культивирование клеток на питательных средах, содержащих различные осмотически активные вещества маннит или сорбит в концентрации 2—6 %, аминокислоты и среди них, в первую очередь, пролин, чье значение для связывания воды в клетках растений широко известно, а также у-аминомасляная кислота. [c.137]

    Идея о возможности культивирования клеток вне организма была высказана еще в конце прошлого века в отношении клеток растений. Однако впервые удалось ввести в культуры клетки животных, что было осуществлено в начале нашего века. Культивировать растительные клетки на искусственных питательных средах исследователям долго не удавалось. Первые успехи в этой области относятся к 30-м годам, и бурное развитие нового направления работ с клетками растений и животных происходит в 60—70-е годы. [c.7]

    Способность интактных растений синтезировать различные соединения привела к предположению, что тем же свойством будут обладать клетки и ткани этих растений, выращиваемые в стерильных условиях. Для некоторых культур это оказалось справедливым. Но в отдельных случаях клетки либо не проявляли способности к синтезу необходимых веществ, либо синтезировали их в минимальных количествах. Понадобились долгие эксперименты по подбору питательных сред, условий культивирования, исследованию новых штаммов, полученных благодаря генетической гетероген- [c.179]

    При всех различиях между типами эукариот методические подходы к культивированию клеток насекомых, растений и млекопитающих имеют много общего. Сначала берут небольшой кусочек ткани данного организма и обрабатывают его протеолитическими ферментами, расщепляющими белки межклеточного материала (при работе с растительными клетками добавляют специальные ферменты, разрушающие клеточную стенку). Высвободившиеся клетки помещают в сложную питательную среду, содержащую аминокислоты, антибиотики, витамины, соли. [c.27]

    Растительные клетки способны синтезировать несравненно большее количество метаболитов по сравнению с микробными клетками. Продукты вторичного обмена клеточных культур растений в ряде случаев не имеют аналогов и не могут быть получены методом органического синтеза. Таким образом, клеточный синтез растительных клеток играет уникальную роль при получении ряда вешеств для нужд промышленности и медицины. Первичные культуры клеток во многих случаях содержат небольшие количества вторичных метаболитов, имеющих прикладное значение. Поэтому необходимо оптимизировать условия культивирования, целенаправленно интенсифицировать синтез целевого продукта. Это осуществляется  [c.498]


    II этап (1902—1922 гг.) ознаменовался созданием первых питательных сред для культивирования тканей животных. Эти среды были природного происхождения и содержали, как правило, плазму крови и зародышевую жидкость. Попытки вырастить изолированные растительные ткани на искусственных питательных средах, содержащих растительные экстракты, оказались неудачными, так как в экспериментах использовались мало подходящие для проявления ростовой активности клетки и ткани высших растений. [c.78]

    В каллусных и суспензионных культурах встречаются клетки, имеющие диплоидный набор хромосом, свойственный исходному растению, полиплоидные клетки, содержащие 3,4,5 и более хромосомных наборов. Наряду с полиплоидией в культуре каллусных тканей можно нередко наблюдать анеуплоидию (возрастание или уменьшение хромосомного набора на несколько хромосом). Чем длительнее культивировать каллусные клетки, тем больше они различаются по плоидности. В каллусных клетках табака через четыре года культивирования совсем не остается диплоидных клеток все клетки становятся полиплоидными или анеуплоидны-ми. Этот факт указывает на то, что изменение плоидности происходит под влиянием условий культивирования и прежде всего входящих в со- [c.88]

    Растения, выраш,енные из культивируемых клеток, характеризуются генетической нестабильностью (сомаклональная вариация). То же явление имеет место, если интактное растение подвергается стрессу Но-видимому, при стрессах, к которым относят и условия культивирования, в клетках растений происходят разнообразные хромосомные перестройки (см. разд. 10.5.10). Образовавшиеся мутантные растения могут иметь преимуш,ества в изменившихся или неблагоприятных условиях. В настояшее время сомаклональные варианты используются селекционерами как исходный материал для получения улучшенных сортов сельскохозяйственных растений. [c.438]

    Резюмируя, можно отметить, что техника культивирования тканей растений позволяет получить длительную, пересадочную каллусную культуру из любых живых тканевых клеток интакт-ного растения. Клетки различно дифференцированные (в том числе и меристематические) переходят in vitro к сложному процессу дедифференцнации, теряют присущую им структурную организацию и специфические функции и индуцируются к делению, образуя первичный каллус. [c.17]

    Достижение этой цели возможно с использованием техники клеточной инженерии. Введение азотфиксирующих бактерий в клетки или популяции культивируемых клеток небобовых растений позволяет испытать большое число сочетаний партнеров и выбрать устойчивые ассоциации на уровне культивируемых клеток. В процессе культивирования возможна адаптация партнеров к совместному существованию, аналогичная тем изменениям, которые приобретают компоненты природных симбиотических ассоциаций по сравнению со свободноживущими формами. Последующее получение растения в результате индукции органогенеза при условии сохранения клеточных взаимодействий, складывающихся в клеточных системах, позволило бы решать поставленную задачу — инкорпорирования бактериального симбионта в ткани (клетки) растения, интеграции их в клеточные ансамбли хозяина при сохранении интактности вводимого симбионта. [c.56]

    Развитие метода культивирования клеток растений открыло широкие возможности для изучения биологии клетки, ее биосинтети- [c.164]

    Культура изолированных органов, тканей и клеток растений в настоящее время находит все большее применение в биологических исследованиях. Такие методы, как клональное микроразмножение растений, оздоровление от вирусной инфекции с помощью культуры апикальных меристем, регенерация растений из каллусных культур, находят сейчас практическое применение. Существенную помощь методы культивирования in vitro могут оказать генетикам и селекционерам в получении новых форм растений. Используя гаплоиды, незрелые или нежизнеспособные зародыши гибридов, сомаклональные варианты растений-регенерантов, биотехиологи вместе с селекционерами ускоряют и облегчают селекционный процесс. Более сложная техника манипулирования с клетками растений необходима для получения соматических гибридов слиянием протопластов или для генетической трансформации клеток и растений. [c.232]

    Обычно в основе вегетативного размножения растений лежит способность эмбриональной ткани меристемы (гл. 1, разд. Д. 4) дифференцироваться в корни и побеги. С другой стороны, при культивировании изолированных клеток флоемы или других дифференцированных тканей, как правило, формируется так называемый каллус, т. е. масса претерпевших дифференцировку клеток, напоминающих эмбриональные. При создании благоприятных условий, в частности при культивировании в среде, содержащей кокосовое молоко, а также при соблюдении соответствующего соотношения концентраций ауксина и цитокинина удавалось индуцировать реверсию, т. е. превращение клеток флоемы корня моркови в эмбриональные клетки, из которых затем развивалось целое растение [136]. Этот опыт имеет принципиальное значение, так как определенно доказывает, что дифференцированные клетки флоемы моркови содержат полный набор генов, необходимых для развития растения. Вместе с тем существенно и то, что с большинством растений такого рода опыт воспроизвести довольно трудно и процесс дедифференцировки далеко не всегда происходит автоматически. Все же это происходит в достаточном числе случаев, чтобы установить факт тотипотентности ядра дифференцированных клеток. [c.354]


    Второе направление развития Б. связано с клеточной инженерией. Культура растит, клеток может служить прежде всего источником свойственных данному растению вторичных продуктов, напр, антиаритмич. алкалоида ай-малина из раувольфин змеиной. Пользуясь способностью клеток растений превращаться на спец. средах в сформированное растение, клеточные культуры применяют для получения оезвирусных растений, пытаются проводить селекцию форм с нужными св-вами. Животные клетки более требовательны к условиям культивирования, им необходимы дорогостоящие среды. Все более широкое применение находят т. наз. гибридомы, полученные в лаборатории путем слияния двух различных клеток и служащие источником белков, необходимых для диагностики и лечения болезней человека, животных и растений. [c.290]

    Липидный состав клеточных мембран изменчив. В меньшей степени это проявляется в животных клетках, находящихся в условиях стабильной внутр. среды. Однако и в этом случае можно модифицировать состав липидов в нек-рых мембранах, меняя пнщ. рацион. Липидный состав мембран растений заметно измейяется в зависимости от освещенности, т-ры н pH. Еще более изменчив состав бактериальных мембран. Он варьирует не только в зависимости от штамма, но и в пределах одного и того же штамма, а также от условий культивирования и фазы роста. У вирусов, имеющих липопротеиновую оболочку, липидный состав мембран также не постоянен и определяется составом лршидов клетки-хозяина. [c.29]

    Асептика. Прежде всего культивирование фрагментов ткани или органа растения — эксплантов, а тем более отдельных клеток требует соблюдения полной асептики. Микроорганизмы, которые могут попасть в питательную среду, вьщеляют токсины, ингибирующие рост клеток и приводящие культуру к гибели. Поэтому при всех манипуляциях с клетками и тканями при культивировании in vitro соблюдают определенные правила асептики в ламинар-боксе или в асептических комнатах. В первом случае асептика достигается подачей профильтрованного стерильного воздуха, направленного из ламинкар-бокса наружу, на работающего. Асептические комнаты стерилизуют с помощью ультрафиолетовых ламп, а работают в таких помещениях в стерильной одежде. Рабочую поверхность столов в асептических комнатах и инструменты перед работой дополнительно стерилизуют спиртом. [c.160]

    Вторичная дифференцировка каллусной клетки может завершиться образованием в каллусной ткани отдельных дифференцированных клеток. Они имеют определенное строение и выполняют специфические функции. Примером служит образование эпибла-стов — клеток, в которых запасаются вторичные метаболиты. Это наиболее простой тип дифференцировки каллусной клетки. Более сложная гистологическая дифференцировка завершается образованием в каллусе различных тканей млечников, волокон, трихом, элементов ксилемы (трахеи и трахеиды) и флоэмы (ситовидные трубки и клетки-спутницы). К самым сложным видам вторичной дифференцировки относятся органогенез — образование органов и соматический эмбриогенез — образование из соматических клеток эмбриоидов, биполярных зародышеподобных структур. Все эти типы дифференцировки возможны только благодаря тотипотентности любая растительная клетка содержит полный набор генов, характерный для того организма, из которого она была вьщелена. Потенциальные возможности всех клеток этого растения одинаковы каждая из них в определенных условиях может дать начало целому организму. Однако выяснено, что реально детерминируется только одна из 400—1000 клеток, что, вероятно, связано с физиологическим состоянием клетки, с ее компетентностью. Так, у эксплантов стеблевого происхождения компетентны к действию экзогенных фитогормонов и, следовательно, способны к морфогенезу только клетки эпидермальных и субэпидер-мальных тканей (Тран Тан Ван, 1981). Однако компетентность клеток может приобретаться ими в процессе культивирования [c.173]

    В 1949 г. было выяснено, что клетки меристематических тканей растений обычно не содержат вирусов. В 1952 г. Дж. Мораль и Г. Мартин предложили, используя культивирование меристем, получать здоровые, избавленные от вирусной инфекции растения. Они обнаружили, что при выращивании верхушки побега, состоящей из конуса нарастания и 2—3 листовых зачатков, на ней образуются сферические образования — протокормы. Протокормы можно делить, и каждую часть культивировать до образования корней и листовых примордиев, получая в большом количестве генетически однородные безвирусные растения. В настоящий момент культивирование меристем побега — наиболее эффективный способ оздоровления растительного материала от вирусов, вироидов и микоплазм. Однако при этом способе требуется соблюдать определенные правила. Как уже говорилось, чем меньше размер мери-стематического экспланта, тем труднее вызвать в нем морфогенез. [c.198]

    Семейство Azotoba tera eae объединяет виды, имеющие крупные клетки, склонные к изменению морфологии в зависимости от возраста культуры и условий культивирования. Среди представителей этого семейства встречаются подвижные и неподвижные формы. Бактерии рода Хго/оЬас/г/-образуют цисты. Хемоорганогетеротрофы. Способны активно фиксировать молекулярный азот. Облигатные аэробы. Обитают в почве, воде и на поверхности растений. Азотобактер — первый аэробный микроорганизм, для которого была показана способность фиксировать молекулярный азот. [c.166]

    В течение последних десятилетий широкое распространение получил метод культивирования растительных клеток. Культивируемые клетки особый интерес представляют как источники экологически чистых продуктов вторичного метаболизма растений, применяемых в медицине, пищевой промышленности, парфюмерии. Некоторые продукты синтеза растительньгх клеток представлены в табл. 1.1. [c.16]

    Был рассмотрен метод трансформации растительньгх клеток при помощи микроорганизмов рода Agroba terium. Существует еще ряд методов, например свободное поглощение чужеродного генетического материала в процессе ко-культивирования с растительными клетками, инъекция ДНК в растительные клетки и целые растения и др. В результате разработанных методов генетическая инженерия получила возможность надежной трансформации ряда растений, в том числе и сельскохозяйственных культур. Так, имеются хорошие [c.505]

    Питательные среды, рекомендуемые для культивирования представителей акариот, прокариот и эукариот принципиально отличаются между собой в том смысле, что для "выращивания" акариот необходимы живые клетки или ткани Так, вирусы гриппа накапливают в куриных эмбрионах, вирус табачной мозаики — на растениях табака, фаги — в клетках бактерий и т д [c.139]

    Принципы выращивания бактерий, дрожжей и других грибов все шире используются и при культивировании животных и растительных клеток. Разработаны методы вырапщвания растительных клеток на синтетических средах в ферментерах емкостью в тысячи литров. В таких условиях растительные клетки образуют ферменты и вторичные метаболиты в концентрациях, которые могут быть на 1-2 порядка выше, чем в интактных клетках. Неожиданным оказалось то, что в подобных культурах могут накапливаться и такие вещества, которые растение синтезирует лишь в малых количествах или же не синтезирует вовсе. Ве-рбятно, со временем можно будет получать алкалоиды, гликозиды, стероиды, органические кислоты и другие вторичные метаболиты с помошью растительных клеток. [c.345]

    Росту популяции в ограниченном объеме (или, как это еще формулируют, насыщению замкнутого объема живыми существами) вне зависимости от вида микроорганизма (бактерии, дрожжи, грибы, водоросли, клетки животных или растений, культивируемые in vitro и даже вирусы, рост популяции которых является результатом сложного взаимодействия облигатного паразита и хозяина) соответствует примерно одна и та же S-образная (сигмоидная) кинетическая кривая, в чем можно усмотреть проявление принципа биологического эпиморфизма. S-образный тип кинетических кривых роста популяции в условиях периодического культивирования воспроизводится независимо от состава питательной среды, внешних условий и характера метаболизма микроорганизма. Этот факт имеет настолько фундаментальный характер, что переход экспоненциального роста, каза- [c.29]

    Микрорепродукцией называют размножение, или клонирование, растений с помощью культуры ткани. Приставка микро указывает на то, что в качестве исходного материала обычно используют мелкие объекты — либо отдельные клетки, либо маленькие кусочки ткани. Этот материал выращивают на специальных культуральных средах и поэтому называют культурой ткани. В основе культивирования лежат эксперименты, показавшие, что кусочки ткани, отделенные от растений, можно заставить расти в растворе, содержащем питательные вещества и некоторые растительные гормоны, в частности ауксины и цитокинины. Гормоны необходимы для поддержания непрерывного деления клеток. В настоящее время культуру ткани широко используют для сохранения выведенных сортов растений (рис. 21.11). [c.49]

    Ранее было известно, что некоторые виды почвенных бактерий Agroba teria) могут заражать двудольные растения и вызывать при этом образование специфических опухолей — корончатых галлов. Опухоли состоят из дедифференцированных клеток, интенсивно делящихся и растущих в месте заражения. При культивировании in vitro клетки опухоли могут расти в отсутствие гормонов, необходимых для роста нормальных растительных клеток. Если после заражения все агробактерии инактивировать добавлением антибиотика, то клетки корончатых галлов сохраняют способность к неконтролируемому делению. Итак, присутствие агробактерии необходимо только для индуцирования образования опухоли. Опухолевые клетки начинают синтезировать необычные для растения аминокислоты — опины (производные аргинина), которые используются агробактериями в качестве источника азота и углерода. Таким образом, при заражении растения агробактерией происходит перестройка метаболизма трансформированных растительных клеток, и они начинают синтезировать соединения, необходимые только для бактерий. [c.51]

    Кроме изменения плоидности, культивирование клеток и тканей растений in vitro вызывает появление в клетках хромосомных аббераций. Последние сказываются на биологических особенностях культивируемых тканей, изменяя их внешний вид, обмен веществ, скорость роста. Наряду с видимыми под микроскопом хромосомными мутациями в культивируемых клетках могут возникать изменения, не выявляемые микроскопически. Эти изменения могут затрагивать как незначительные участки хромосом, так и структуру генов. Генные мутации выявляются по изменению морфологии и физиолого-биохимических свойств клеток. [c.89]

    Формирование эмбриоидов в культуре тканей происходит в два этапа. На первом этапе клетки экспланта дифференцируются за счет добавления в питательную среду ауксинов, как правило, 2,4-дихлорфеноксиуксусной кислоты (2,4-Д) и превращаются в эмбриональные. На следующей стадии необходимо заставить сформировавшиеся клетки развиваться в эмбриоиды, что достигается уменьшением концентрации ауксина или полного его исключения из состава питательной среды. Соматический эмбриогенез возможно наблюдать непосредственно в тканях первичного экспланта, а также в каллусной культуре. Причем последний способ менее пригодный при клональном микроразмножении, так как посадочный материал, полученный таким методом, будет генетически нестабилен по отношению к растению-донору. Как правило, соматический эмбриогенез происходит при культивировании каллусных клеток в жидкой питательной среде (суспензия) и является наиболее трудоемкой операцией, так как не всегда удается реализовывать свойственную клеткам тотипотентность. Однако этот метод размножения имеет свои преимущества, связанные с сокращением последнего (третьего) этапа клонального микроразмножения, не требующего подбора специальных условий укоренения и адаптации пробирочных растений, так как соматические зародыши представляют собой полностью сформированные растеньица. При использовании соответствующей техйики их капсулирования из этих эмбриоидов возможно получать искусственные семена. [c.114]

    Однако, несмотря на некоторые недостатки, данный метод имеет положительные стороны и преимущества. Во-первых, он является эффективным и экономически выгодным, так как в процессе размножения из каждой индивидуальной каллусной клетки при благоприятных условиях культивирования может сформироваться адвентивная почка, дающая начало новому растению. Во-вторых, в ряде случаев он является единственно возможным способом размножения растений в культуре тканей. В-третьих, представляет большой интерес для селекционеров, так как растения, полученные данным методом, различаются генетически и морфофизиологически. Это дает возможность селекционерам проводить отбор растений по хозяйственно-важным признакам и оценивать их поведение в полевых условиях. Этот метод целесообразно применять лишь к тем растениям, для которых показана генетическая стабильность каллусной ткани, а вариабельность между растениями-регенерантами не превышает уровня естественной изменчивости. К таким растениям можно отнести амариллис, томаты, спаржу, некоторые древесные породы и другие культуры. Через каллусную культуру были размножены сахарная свекла, некоторые представители рода Brassi a, кукуруза, рис, пшеница и другие злаковые, подсолнечник, лен, разработаны условия, способствующие регенерации растений из каллуса огурца, картофеля, томатов. [c.115]

    Структурной основой используемого на практике явления служит специфика строения точки роста растений дистальная ее часть, представленная апикальной меристемой, у разных растений имеет средний диаметр до 200 мкм и высоту от 20 до 150 мкм. В более нижних слоях дифференцирующиеся клетки меристемы образуют прокамбий, дающий начало пучкам проводящей системы. Известно, что успех клонального микроразмножения зависит от размера меристематического экспланта, чем больше листовых зачатков и тканей стебля, тем легче идет процесс морфогенеза, заканчивающийся получением целого, нормального пробирочного растения. Вместе с тем зона, свободная от вирусных частиц, очень различна для разных вирусов. Это зависит также от вида и сорта растения. В колеоптиле злаков, например, размеры участка верхушки, не содержащей сосуды, могут достигать до 250 мкм. Такая особенность строения апикальной меристемы исключает проникновение в нее вируса путем быстрого транспортирования по проводящей системе, но допускает возможность медленного распространения через плазмодезмы, соединяющие меристематические клетки. При культивировании апикальной меристемы картофеля величиной 200 мкм на питательной среде и дальнейшее получение из нее растений-регенерантов показали, что среди полученных растений только 10% были свободны от Х-вируса, но 70% — от Y-вируса. [c.116]


Смотреть страницы где упоминается термин Культивирование клеток растени: [c.146]    [c.489]    [c.173]    [c.79]    [c.173]    [c.10]    [c.171]    [c.237]    [c.298]    [c.159]    [c.159]    [c.172]    [c.174]    [c.191]    [c.206]    [c.174]    [c.78]    [c.103]    [c.115]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Клетки растений культивирование



© 2025 chem21.info Реклама на сайте